ardupilot/libraries/AP_Scripting/applets/Aerobatics/FixedWing/Schedules/F4CScaleExample.txt
2022-12-29 07:49:15 +11:00

183 lines
5.7 KiB
Plaintext

# trajectory tracking aerobatic control
# See README.md for usage
# Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller
# assistance from Paul Riseborough, testing by Henry Wurzburg
# To use this schedule put the file on your microSD in the root directory
# (not the APM directory) with name trick91.txt The schedule can then be
# used in auto missions or in TRIKn_ID commands for tricks on a switch
# This schedule is set up to be flown Left to Right. The schedule starts downwind - so
# the mission should be set up with WP's lined up on the flight line (150m out from the
# pilot), and the mission should be triggered when the plane gets to the center marker
# heading RIGHT to LEFT. Schedule direction is reversed with aerom_scale = -1 (and
# remember to reverse the mission WP's as well). Note the required height is greater
# than 400 feet - so only fly at an airfield where there is a 1500 foot clearance
# This is an example of a F4C Scale schedule. Some manouvers are flown over the center
# line of the runway. Please understand the behaviour by flying in SITL before flying this
# schedule with a real aircraft! Your aircraft requires adequate performance to complete
# the schedule
name: F4CScaleExampleSchedule
function half_climbing_circle(radius, height, bank_angle, arg4)
return make_paths("half_climbing_circle", {
{ path_horizontal_arc(radius, 180, height), roll_angle_entry_exit(bank_angle) },
})
end
function scale_figure_eight(r, bank_angle, arg3, arg4)
local rabs = math.abs(r)
return make_paths("scale_figure_eight", {
{ path_straight(rabs), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) },
{ path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) },
{ path_straight(3*rabs), roll_angle(0) },
})
end
function immelmann_turn(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("immelmann_turn", {
{ path_vertical_arc(r, 180), roll_angle(0) },
{ path_straight(rabs/2), roll_angle(180) },
})
end
function climbing_circle(radius, height, bank_angle, arg4)
return make_paths("climbing_circle", {
{ path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) },
})
end
function upline_20(r, height_gain, arg3, arg4)
local h = (height_gain - 2*r*(1.0-math.cos(math.rad(20))))/math.sin(math.rad(20))
assert(h >= 0)
return make_paths("upline_45", {
{ path_vertical_arc(r, 20), roll_angle(0) },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(-r, 20), roll_angle(0) },
})
end
function loop(radius, bank_angle, num_loops, arg4)
if not num_loops or num_loops <= 0 then
num_loops = 1
end
return make_paths("loop", {
{ path_vertical_arc(radius, 360*num_loops), roll_angle_entry_exit(bank_angle) },
})
end
function half_reverse_cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("half_reverse_cuban_eight", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 225), roll_angle(0) },
})
end
function split_s(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("split_s", {
{ path_straight(rabs/2), roll_angle(180) },
{ path_vertical_arc(-r, 180), roll_angle(0) },
})
end
function derry_turn(radius, bank_angle, roll_dist, arg4)
local direction = sgn(radius)
local abs_bank = math.abs(bank_angle)
local bank2 = 360.0 - abs_bank*2
return make_paths("derry_turn", {
{ path_horizontal_arc(radius, 90), roll_angle_entry(direction*abs_bank) },
{ path_straight(roll_dist), roll_angle(bank2) },
{ path_horizontal_arc(-radius, 90), roll_angle_exit(direction*abs_bank) },
})
end
function barrel_roll(radius, length, num_spirals, arg4)
local gamma_deg = math.deg(math.atan((length/num_spirals)/(2*math.pi*radius)))
local speed = target_groundspeed()
local bank = math.deg(math.atan((speed*speed) / (radius * GRAVITY_MSS)))
local radius2 = radius/(1.0 - math.cos(math.rad(90-gamma_deg)))
return make_paths("barrel_roll", {
{ path_horizontal_arc(-radius2, 90-gamma_deg, 0), roll_angle_entry_exit(-bank) },
{ path_cylinder(radius, length, num_spirals), roll_angle(0) },
{ path_horizontal_arc(radius2, 90-gamma_deg, 0), roll_angle_entry_exit(bank) },
})
end
straight_roll 20 0
side_step 15 70
straight_roll 200
half_climbing_circle -65 0 -50
straight_roll 10 0
align_center
message: ScaleFigureEight
scale_figure_eight -140 -35
straight_roll 20 0
immelmann_turn 90
align_center
message: Descending360
climbing_circle 180 -225 40
straight_roll 40 0
upline_20 100 45
straight_roll 20 0
half_climbing_circle 65 0 50
align_center
message: Loop
loop 80 0 1
straight_align -40
half_reverse_cuban_eight 80
align_center
message: ImmelmannTurn
immelmann_turn 80
straight_align -140
split_s 80
align_center
message: HalfCubanEight
half_cuban_eight 80
straight_align -180
half_climbing_circle 65 0 50
align_center
message: DerryTurn
derry_turn 140 60 30
straight_roll 80 0
half_climbing_circle -140 0 -50
align_center
message: GearDemo
climbing_circle -140 0 -40
straight_roll 290 0
half_climbing_circle -105 0 -45
align_center
message: BarrelRoll
barrel_roll 80 260 1
straight_roll 5 0
half_cuban_eight 80
straight_roll 60 0