mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
f2f9349419
Add code to reflect USB ACM parity setting to the passthrough port alongside existing support for ACM baud rate changes. Some use cases for serial passthrough require specific parity settings. For example, even parity is used and required by the USART protocol used in the STM32 system bootloader. This enhancement allows the use of standard flash programming tools such as STM32CubeProgrammer to flash connected STM based peripherals such as Receivers and Telemetry radios via serial passthrough. Some examples of such peripherals include the FrSky R9 receivers as well as various other STM based LoRa modules used by the mLRS project.
227 lines
5.5 KiB
C++
227 lines
5.5 KiB
C++
/*
|
|
implement generic UARTDriver code, including port locking
|
|
*/
|
|
#include "AP_HAL.h"
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
void AP_HAL::UARTDriver::begin(uint32_t baud, uint16_t rxSpace, uint16_t txSpace)
|
|
{
|
|
if (lock_write_key != 0) {
|
|
// silently fail
|
|
return;
|
|
}
|
|
return _begin(baud, rxSpace, txSpace);
|
|
}
|
|
|
|
void AP_HAL::UARTDriver::begin(uint32_t baud)
|
|
{
|
|
return begin(baud, 0, 0);
|
|
}
|
|
|
|
/*
|
|
lock the uart for exclusive use by write_locked() and read_locked() with the right key
|
|
*/
|
|
bool AP_HAL::UARTDriver::lock_port(uint32_t write_key, uint32_t read_key)
|
|
{
|
|
if (lock_write_key != 0 && write_key != lock_write_key && write_key != 0) {
|
|
// someone else is using it
|
|
return false;
|
|
}
|
|
if (lock_read_key != 0 && read_key != lock_read_key && read_key != 0) {
|
|
// someone else is using it
|
|
return false;
|
|
}
|
|
lock_write_key = write_key;
|
|
lock_read_key = read_key;
|
|
return true;
|
|
}
|
|
|
|
void AP_HAL::UARTDriver::begin_locked(uint32_t baud, uint16_t rxSpace, uint16_t txSpace, uint32_t key)
|
|
{
|
|
if (lock_write_key != 0 && key != lock_write_key) {
|
|
// silently fail
|
|
return;
|
|
}
|
|
return _begin(baud, rxSpace, txSpace);
|
|
}
|
|
|
|
/*
|
|
write to a locked port. If port is locked and key is not correct then 0 is returned
|
|
and write is discarded. All writes are non-blocking
|
|
*/
|
|
size_t AP_HAL::UARTDriver::write_locked(const uint8_t *buffer, size_t size, uint32_t key)
|
|
{
|
|
if (lock_write_key != 0 && key != lock_write_key) {
|
|
return 0;
|
|
}
|
|
return _write(buffer, size);
|
|
}
|
|
|
|
/*
|
|
read from a locked port. If port is locked and key is not correct then -1 is returned
|
|
*/
|
|
ssize_t AP_HAL::UARTDriver::read_locked(uint8_t *buf, size_t count, uint32_t key)
|
|
{
|
|
if (lock_read_key != 0 && key != lock_read_key) {
|
|
return 0;
|
|
}
|
|
ssize_t ret = _read(buf, count);
|
|
#if AP_UART_MONITOR_ENABLED
|
|
auto monitor = _monitor_read_buffer;
|
|
if (monitor != nullptr && ret > 0) {
|
|
monitor->write(buf, ret);
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
uint32_t AP_HAL::UARTDriver::available_locked(uint32_t key)
|
|
{
|
|
if (lock_read_key != 0 && lock_read_key != key) {
|
|
return 0;
|
|
}
|
|
return _available();
|
|
}
|
|
|
|
size_t AP_HAL::UARTDriver::write(const uint8_t *buffer, size_t size)
|
|
{
|
|
if (lock_write_key != 0) {
|
|
return 0;
|
|
}
|
|
return _write(buffer, size);
|
|
}
|
|
|
|
size_t AP_HAL::UARTDriver::write(uint8_t c)
|
|
{
|
|
return write(&c, 1);
|
|
}
|
|
|
|
size_t AP_HAL::UARTDriver::write(const char *str)
|
|
{
|
|
return write((const uint8_t *)str, strlen(str));
|
|
}
|
|
|
|
ssize_t AP_HAL::UARTDriver::read(uint8_t *buffer, uint16_t count)
|
|
{
|
|
return read_locked(buffer, count, 0);
|
|
}
|
|
|
|
bool AP_HAL::UARTDriver::read(uint8_t &b)
|
|
{
|
|
ssize_t n = read(&b, 1);
|
|
return n > 0;
|
|
}
|
|
|
|
int16_t AP_HAL::UARTDriver::read(void)
|
|
{
|
|
uint8_t b;
|
|
if (!read(b)) {
|
|
return -1;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
|
|
uint32_t AP_HAL::UARTDriver::available()
|
|
{
|
|
if (lock_read_key != 0) {
|
|
return 0;
|
|
}
|
|
return _available();
|
|
}
|
|
|
|
void AP_HAL::UARTDriver::end()
|
|
{
|
|
if (lock_read_key != 0 || lock_write_key != 0) {
|
|
return;
|
|
}
|
|
_end();
|
|
}
|
|
|
|
void AP_HAL::UARTDriver::flush()
|
|
{
|
|
if (lock_read_key != 0 || lock_write_key != 0) {
|
|
return;
|
|
}
|
|
_flush();
|
|
}
|
|
|
|
bool AP_HAL::UARTDriver::discard_input()
|
|
{
|
|
if (lock_read_key != 0) {
|
|
return false;
|
|
}
|
|
return _discard_input();
|
|
}
|
|
|
|
/*
|
|
default implementation of receive_time_constraint_us() will be used
|
|
for subclasses that don't implement the call (eg. network
|
|
sockets). Best we can do is to use the current timestamp as we don't
|
|
know the transport delay
|
|
*/
|
|
uint64_t AP_HAL::UARTDriver::receive_time_constraint_us(uint16_t nbytes)
|
|
{
|
|
return AP_HAL::micros64();
|
|
}
|
|
|
|
// Helper to check if flow control is enabled given the passed setting
|
|
bool AP_HAL::UARTDriver::flow_control_enabled(enum flow_control flow_control_setting) const
|
|
{
|
|
switch(flow_control_setting) {
|
|
case FLOW_CONTROL_ENABLE:
|
|
case FLOW_CONTROL_AUTO:
|
|
return true;
|
|
case FLOW_CONTROL_DISABLE:
|
|
case FLOW_CONTROL_RTS_DE:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint8_t AP_HAL::UARTDriver::get_parity(void)
|
|
{
|
|
return AP_HAL::UARTDriver::parity;
|
|
}
|
|
|
|
#if HAL_UART_STATS_ENABLED
|
|
// Take cumulative bytes and return the change since last call
|
|
uint32_t AP_HAL::UARTDriver::StatsTracker::ByteTracker::update(uint32_t bytes)
|
|
{
|
|
const uint32_t change = bytes - last_bytes;
|
|
last_bytes = bytes;
|
|
return change;
|
|
}
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
// Write UART log message
|
|
void AP_HAL::UARTDriver::log_stats(const uint8_t inst, StatsTracker &stats, const uint32_t dt_ms)
|
|
{
|
|
// get totals
|
|
const uint32_t total_tx_bytes = get_total_tx_bytes();
|
|
const uint32_t total_rx_bytes = get_total_rx_bytes();
|
|
|
|
// Don't log if we have never seen data
|
|
if ((total_tx_bytes == 0) && (total_rx_bytes == 0)) {
|
|
// This could be wrong if we happen to wrap both tx and rx to zero at exactly the same time
|
|
// In that very unlikely case one log will be missed
|
|
return;
|
|
}
|
|
|
|
// Update tracking
|
|
const uint32_t tx_bytes = stats.tx.update(total_tx_bytes);
|
|
const uint32_t rx_bytes = stats.rx.update(total_rx_bytes);
|
|
|
|
// Assemble struct and log
|
|
struct log_UART pkt {
|
|
LOG_PACKET_HEADER_INIT(LOG_UART_MSG),
|
|
time_us : AP_HAL::micros64(),
|
|
instance : inst,
|
|
tx_rate : float((tx_bytes * 1000) / dt_ms),
|
|
rx_rate : float((rx_bytes * 1000) / dt_ms),
|
|
};
|
|
AP::logger().WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
#endif // HAL_LOGGING_ENABLED
|
|
#endif // HAL_UART_STATS_ENABLED
|