ardupilot/Blimp/GCS_Mavlink.cpp
2023-08-22 08:04:10 +10:00

619 lines
18 KiB
C++

#include "Blimp.h"
#include "GCS_Mavlink.h"
#include <AP_RPM/AP_RPM_config.h>
MAV_TYPE GCS_Blimp::frame_type() const
{
return blimp.get_frame_mav_type();
}
MAV_MODE GCS_MAVLINK_Blimp::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
// we are armed if we are not initialising
if (blimp.motors != nullptr && blimp.motors->armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Blimp::custom_mode() const
{
return (uint32_t)blimp.control_mode;
}
MAV_STATE GCS_MAVLINK_Blimp::vehicle_system_status() const
{
// set system as critical if any failsafe have triggered
if (blimp.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (blimp.ap.land_complete) {
return MAV_STATE_STANDBY;
}
return MAV_STATE_ACTIVE;
}
void GCS_MAVLINK_Blimp::send_position_target_global_int()
{
Location target;
if (!blimp.flightmode->get_wp(target)) {
return;
}
static constexpr uint16_t POSITION_TARGET_TYPEMASK_LAST_BYTE = 0xF000;
static constexpr uint16_t TYPE_MASK = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE |
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE |
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE | POSITION_TARGET_TYPEMASK_LAST_BYTE;
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
TYPE_MASK, // ignore everything except the x/y/z components
target.lat, // latitude as 1e7
target.lng, // longitude as 1e7
target.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void GCS_MAVLINK_Blimp::send_nav_controller_output() const
{
}
float GCS_MAVLINK_Blimp::vfr_hud_airspeed() const
{
Vector3f airspeed_vec_bf;
if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// we are running the EKF3 wind estimation code which can give
// us an airspeed estimate
return airspeed_vec_bf.length();
}
return AP::gps().ground_speed();
}
int16_t GCS_MAVLINK_Blimp::vfr_hud_throttle() const
{
if (blimp.motors == nullptr) {
return 0;
}
return (int16_t)(blimp.motors->get_throttle() * 100);
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Blimp::send_pid_tuning()
{
if (blimp.control_mode == Mode::Number::MANUAL || blimp.control_mode == Mode::Number::LAND) {
//No PIDs are used in Manual or Land mode.
return;
}
static const int8_t axes[] = {
PID_SEND::VELX,
PID_SEND::VELY,
PID_SEND::VELZ,
PID_SEND::VELYAW,
PID_SEND::POSX,
PID_SEND::POSY,
PID_SEND::POSZ,
PID_SEND::POSYAW
};
for (uint8_t i=0; i<ARRAY_SIZE(axes); i++) {
if (!(blimp.g.gcs_pid_mask & (1<<(axes[i]-1)))) {
continue;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
const AP_PIDInfo *pid_info = nullptr;
switch (axes[i]) {
case PID_SEND::VELX:
pid_info = &blimp.pid_vel_xy.get_pid_info_x();
break;
case PID_SEND::VELY:
pid_info = &blimp.pid_vel_xy.get_pid_info_y();
break;
case PID_SEND::VELZ:
pid_info = &blimp.pid_vel_z.get_pid_info();
break;
case PID_SEND::VELYAW:
pid_info = &blimp.pid_vel_yaw.get_pid_info();
break;
case PID_SEND::POSX:
pid_info = &blimp.pid_pos_xy.get_pid_info_x();
break;
case PID_SEND::POSY:
pid_info = &blimp.pid_pos_xy.get_pid_info_y();
break;
case PID_SEND::POSZ:
pid_info = &blimp.pid_pos_z.get_pid_info();
break;
case PID_SEND::POSYAW:
pid_info = &blimp.pid_pos_yaw.get_pid_info();
break;
default:
continue;
}
if (pid_info != nullptr) {
mavlink_msg_pid_tuning_send(chan,
axes[i],
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D,
pid_info->slew_rate,
pid_info->Dmod);
}
}
}
uint8_t GCS_MAVLINK_Blimp::sysid_my_gcs() const
{
return blimp.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Blimp::sysid_enforce() const
{
return blimp.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Blimp::telem_delay() const
{
return (uint32_t)(blimp.g.telem_delay);
}
bool GCS_Blimp::vehicle_initialised() const
{
return blimp.ap.initialised;
}
// try to send a message, return false if it wasn't sent
bool GCS_MAVLINK_Blimp::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind();
break;
case MSG_SERVO_OUT:
case MSG_AOA_SSA:
case MSG_LANDING:
case MSG_ADSB_VEHICLE:
// unused
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Stream rate of SYS_STATUS, POWER_STATUS, MCU_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Unused
// @Description: Unused
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Stream rate of VFR_HUD to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Stream rate of AHRS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, GIMBAL_DEVICE_ATTITUDE_STATUS, OPTICAL_FLOW, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Stream rate of PARAM_VALUE to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @RebootRequired: True
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 0),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
MSG_MCU_STATUS,
MSG_MEMINFO,
MSG_CURRENT_WAYPOINT, // MISSION_CURRENT
MSG_GPS_RAW,
MSG_GPS_RTK,
MSG_GPS2_RAW,
MSG_GPS2_RTK,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_FENCE_STATUS,
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
MSG_SIMSTATE,
MSG_AHRS2,
MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_SYSTEM_TIME,
MSG_WIND,
MSG_RANGEFINDER,
MSG_DISTANCE_SENSOR,
MSG_BATTERY_STATUS,
MSG_GIMBAL_DEVICE_ATTITUDE_STATUS,
MSG_OPTICAL_FLOW,
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
#if AP_RPM_ENABLED
MSG_RPM,
#endif
MSG_ESC_TELEMETRY,
MSG_GENERATOR_STATUS,
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
MSG_ADSB_VEHICLE,
MSG_AIS_VESSEL,
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_ENTRY(STREAM_PARAMS),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
bool GCS_MAVLINK_Blimp::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
// #if MODE_AUTO_ENABLED == ENABLED
// // return blimp.mode_auto.do_guided(cmd);
// #else
return false;
// #endif
}
void GCS_MAVLINK_Blimp::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Blimp::params_ready() const
{
if (AP_BoardConfig::in_config_error()) {
// we may never have parameters "initialised" in this case
return true;
}
// if we have not yet initialised (including allocating the motors
// object) we drop this request. That prevents the GCS from getting
// a confusing parameter count during bootup
return blimp.ap.initialised_params;
}
void GCS_MAVLINK_Blimp::send_banner()
{
GCS_MAVLINK::send_banner();
send_text(MAV_SEVERITY_INFO, "Frame: %s", blimp.get_frame_string());
}
MAV_RESULT GCS_MAVLINK_Blimp::_handle_command_preflight_calibration(const mavlink_command_long_t &packet, const mavlink_message_t &msg)
{
return GCS_MAVLINK::_handle_command_preflight_calibration(packet, msg);
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_do_set_roi(const Location &roi_loc)
{
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
// blimp.flightmode->auto_yaw.set_roi(roi_loc);
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK_Blimp::set_home_to_current_location(bool _lock)
{
return blimp.set_home_to_current_location(_lock);
}
bool GCS_MAVLINK_Blimp::set_home(const Location& loc, bool _lock)
{
return blimp.set_home(loc, _lock);
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE;
if (!blimp.flightmode->in_guided_mode() && !change_modes) {
return MAV_RESULT_DENIED;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_DENIED;
}
Location request_location {};
if (!location_from_command_t(packet, request_location)) {
return MAV_RESULT_DENIED;
}
if (request_location.sanitize(blimp.current_loc)) {
// if the location wasn't already sane don't load it
return MAV_RESULT_DENIED; // failed as the location is not valid
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_packet(const mavlink_command_int_t &packet)
{
switch (packet.command) {
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
default:
return GCS_MAVLINK::handle_command_int_packet(packet);
}
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_long_packet(const mavlink_command_long_t &packet)
{
switch (packet.command) {
case MAV_CMD_NAV_TAKEOFF: {
return MAV_RESULT_ACCEPTED;
}
case MAV_CMD_CONDITION_YAW:
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
// blimp.flightmode->auto_yaw.set_fixed_yaw(
// packet.param1,
// packet.param2,
// (int8_t)packet.param3,
// is_positive(packet.param4));
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
default:
return GCS_MAVLINK::handle_command_long_packet(packet);
}
}
void GCS_MAVLINK_Blimp::handleMessage(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS: { // MAV ID: 109
handle_radio_status(msg, blimp.should_log(MASK_LOG_PM));
break;
}
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
break;
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
MAV_RESULT GCS_MAVLINK_Blimp::handle_flight_termination(const mavlink_command_long_t &packet)
{
MAV_RESULT result = MAV_RESULT_FAILED;
if (packet.param1 > 0.5f) {
blimp.arming.disarm(AP_Arming::Method::TERMINATION);
result = MAV_RESULT_ACCEPTED;
}
return result;
}
float GCS_MAVLINK_Blimp::vfr_hud_alt() const
{
if (blimp.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) {
// compatibility option for older mavlink-aware devices that
// assume Blimp returns a relative altitude in VFR_HUD.alt
return blimp.current_loc.alt * 0.01f;
}
return GCS_MAVLINK::vfr_hud_alt();
}
uint64_t GCS_MAVLINK_Blimp::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
GCS_MAVLINK::capabilities());
}
MAV_LANDED_STATE GCS_MAVLINK_Blimp::landed_state() const
{
if (blimp.ap.land_complete) {
return MAV_LANDED_STATE_ON_GROUND;
}
if (blimp.flightmode->is_landing()) {
return MAV_LANDED_STATE_LANDING;
}
// if (blimp.flightmode->is_taking_off()) {
// return MAV_LANDED_STATE_TAKEOFF;
// }
return MAV_LANDED_STATE_IN_AIR;
}
void GCS_MAVLINK_Blimp::send_wind() const
{
Vector3f airspeed_vec_bf;
if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// if we don't have an airspeed estimate then we don't have a
// valid wind estimate on blimps
return;
}
const Vector3f wind = AP::ahrs().wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)),
wind.length(),
wind.z);
}
#if HAL_HIGH_LATENCY2_ENABLED
uint8_t GCS_MAVLINK_Blimp::high_latency_wind_speed() const
{
Vector3f airspeed_vec_bf;
if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// if we don't have an airspeed estimate then we don't have a
// valid wind estimate on blimps
return 0;
}
// return units are m/s*5
const Vector3f wind = AP::ahrs().wind_estimate();
return wind.length() * 5;
}
uint8_t GCS_MAVLINK_Blimp::high_latency_wind_direction() const
{
Vector3f airspeed_vec_bf;
if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// if we don't have an airspeed estimate then we don't have a
// valid wind estimate on blimps
return 0;
}
const Vector3f wind = AP::ahrs().wind_estimate();
// need to convert -180->180 to 0->360/2
return wrap_360(degrees(atan2f(-wind.y, -wind.x))) / 2;
}
#endif // HAL_HIGH_LATENCY2_ENABLED