mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 10:58:30 -04:00
224 lines
6.2 KiB
C++
224 lines
6.2 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_RangeFinder_LeddarOne.h"
|
|
#include <AP_SerialManager/AP_SerialManager.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/*
|
|
The constructor also initialises the rangefinder. Note that this
|
|
constructor is not called until detect() returns true, so we
|
|
already know that we should setup the rangefinder
|
|
*/
|
|
AP_RangeFinder_LeddarOne::AP_RangeFinder_LeddarOne(RangeFinder &_ranger, uint8_t instance,
|
|
RangeFinder::RangeFinder_State &_state,
|
|
AP_SerialManager &serial_manager) :
|
|
AP_RangeFinder_Backend(_ranger, instance, _state)
|
|
{
|
|
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar, 0);
|
|
if (uart != nullptr) {
|
|
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar, 0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
detect if a LeddarOne rangefinder is connected. We'll detect by
|
|
trying to take a reading on Serial. If we get a result the sensor is
|
|
there.
|
|
*/
|
|
bool AP_RangeFinder_LeddarOne::detect(RangeFinder &_ranger, uint8_t instance, AP_SerialManager &serial_manager)
|
|
{
|
|
return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar, 0) != nullptr;
|
|
}
|
|
|
|
// read - return last value measured by sensor
|
|
bool AP_RangeFinder_LeddarOne::get_reading(uint16_t &reading_cm)
|
|
{
|
|
if (uart == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// send a request message for Modbus function 4
|
|
if (send_request() < 0) {
|
|
// TODO: handle LEDDARONE_ERR_SERIAL_PORT
|
|
return false;
|
|
}
|
|
|
|
uint32_t start_ms = AP_HAL::millis();
|
|
while (!uart->available()) {
|
|
// wait up to 200ms
|
|
if (AP_HAL::millis() - start_ms > 200) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// parse a response message, set detections and sum_distance
|
|
// must be signed to handle errors
|
|
int8_t number_detections = parse_response();
|
|
|
|
if (number_detections <= 0) {
|
|
// TODO: when (number_detections < 0) handle LEDDARONE_ERR_
|
|
return false;
|
|
}
|
|
|
|
// calculate average distance
|
|
reading_cm = sum_distance / (uint8_t)number_detections;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
update the state of the sensor
|
|
*/
|
|
void AP_RangeFinder_LeddarOne::update(void)
|
|
{
|
|
if (get_reading(state.distance_cm)) {
|
|
// update range_valid state based on distance measured
|
|
last_reading_ms = AP_HAL::millis();
|
|
update_status();
|
|
} else if (AP_HAL::millis() - last_reading_ms > 200) {
|
|
set_status(RangeFinder::RangeFinder_NoData);
|
|
}
|
|
}
|
|
|
|
/*
|
|
CRC16
|
|
CRC-16-IBM(x16+x15+x2+1)
|
|
*/
|
|
bool AP_RangeFinder_LeddarOne::CRC16(uint8_t *aBuffer, uint8_t aLength, bool aCheck)
|
|
{
|
|
uint16_t crc = 0xFFFF;
|
|
|
|
for (uint32_t i=0; i<aLength; i++) {
|
|
crc ^= aBuffer[i];
|
|
for (uint32_t j=0; j<8; j++) {
|
|
if (crc & 1) {
|
|
crc = (crc >> 1) ^ 0xA001;
|
|
} else {
|
|
crc >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t lCRCLo = LOWBYTE(crc);
|
|
uint8_t lCRCHi = HIGHBYTE(crc);
|
|
|
|
if (aCheck) {
|
|
return (aBuffer[aLength] == lCRCLo) && (aBuffer[aLength+1] == lCRCHi);
|
|
} else {
|
|
aBuffer[aLength] = lCRCLo;
|
|
aBuffer[aLength+1] = lCRCHi;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
send a request message to execute ModBus function 0x04
|
|
*/
|
|
int8_t AP_RangeFinder_LeddarOne::send_request(void)
|
|
{
|
|
uint8_t data_buffer[10] = {0};
|
|
uint8_t i = 0;
|
|
|
|
uint32_t nbytes = uart->available();
|
|
|
|
// clear buffer
|
|
while (nbytes-- > 0) {
|
|
uart->read();
|
|
if (++i > 250) {
|
|
return LEDDARONE_ERR_SERIAL_PORT;
|
|
}
|
|
}
|
|
|
|
// Modbus read input register (function code 0x04)
|
|
data_buffer[0] = LEDDARONE_DEFAULT_ADDRESS;
|
|
data_buffer[1] = 0x04;
|
|
data_buffer[2] = 0;
|
|
data_buffer[3] = 20;
|
|
data_buffer[4] = 0;
|
|
data_buffer[5] = 10;
|
|
|
|
// CRC16
|
|
CRC16(data_buffer, 6, false);
|
|
|
|
// write buffer data with CRC16 bits
|
|
for (i=0; i<8; i++) {
|
|
uart->write(data_buffer[i]);
|
|
}
|
|
uart->flush();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
parse a response message from Modbus
|
|
*/
|
|
int8_t AP_RangeFinder_LeddarOne::parse_response(void)
|
|
{
|
|
uint8_t data_buffer[25] = {0};
|
|
uint32_t start_ms = AP_HAL::millis();
|
|
uint32_t len = 0;
|
|
uint8_t i;
|
|
uint8_t index_offset = 11;
|
|
|
|
// read serial
|
|
while (AP_HAL::millis() - start_ms < 10) {
|
|
uint32_t nbytes = uart->available();
|
|
if (len == 25 && nbytes == 0) {
|
|
break;
|
|
} else {
|
|
for (i=len; i<nbytes+len; i++) {
|
|
if (i >= 25) {
|
|
return LEDDARONE_ERR_BAD_RESPONSE;
|
|
}
|
|
data_buffer[i] = uart->read();
|
|
}
|
|
start_ms = AP_HAL::millis();
|
|
len += nbytes;
|
|
}
|
|
}
|
|
|
|
if (len != 25) {
|
|
return LEDDARONE_ERR_BAD_RESPONSE;
|
|
}
|
|
|
|
// CRC16
|
|
if (!CRC16(data_buffer, len-2, true)) {
|
|
return LEDDARONE_ERR_BAD_CRC;
|
|
}
|
|
|
|
// number of detections
|
|
uint8_t number_detections = data_buffer[10];
|
|
|
|
// if the number of detection is over , it is false
|
|
if (number_detections > LEDDARONE_DETECTIONS_MAX) {
|
|
return LEDDARONE_ERR_NUMBER_DETECTIONS;
|
|
}
|
|
|
|
memset(detections, 0, sizeof(detections));
|
|
sum_distance = 0;
|
|
for (i=0; i<number_detections; i++) {
|
|
// construct data word from two bytes and convert mm to cm
|
|
detections[i] = (((uint16_t)data_buffer[index_offset])*256 + data_buffer[index_offset+1]) / 10;
|
|
sum_distance += detections[i];
|
|
index_offset += 4;
|
|
}
|
|
|
|
return (int8_t)number_detections;
|
|
}
|