ardupilot/libraries/SITL/SIM_Battery.cpp

159 lines
4.3 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
battery model for electric aircraft
*/
#include "SIM_Battery.h"
using namespace SITL;
/*
state of charge table for a single cell battery.
*/
static const struct {
float volt_per_cell;
float soc_pct;
} soc_table[] = {
{ 4.173, 100 },
{ 4.112, 96.15 },
{ 4.085, 92.31 },
{ 4.071, 88.46 },
{ 4.039, 84.62 },
{ 3.987, 80.77 },
{ 3.943, 76.92 },
{ 3.908, 73.08 },
{ 3.887, 69.23 },
{ 3.854, 65.38 },
{ 3.833, 61.54 },
{ 3.801, 57.69 },
{ 3.783, 53.85 },
{ 3.742, 50 },
{ 3.715, 46.15 },
{ 3.679, 42.31 },
{ 3.636, 38.46 },
{ 3.588, 34.62 },
{ 3.543, 30.77 },
{ 3.503, 26.92 },
{ 3.462, 23.08 },
{ 3.379, 19.23 },
{ 3.296, 15.38 },
{ 3.218, 11.54 },
{ 3.165, 7.69 },
{ 3.091, 3.85 },
{ 2.977, 2.0 },
{ 2.8, 1.5 },
{ 2.7, 1.3 },
{ 2.5, 1.2 },
{ 2.3, 1.1 },
{ 2.1, 1.0 },
{ 1.9, 0.9 },
{ 1.6, 0.8 },
{ 1.3, 0.7 },
{ 1.0, 0.6 },
{ 0.6, 0.4 },
{ 0.3, 0.2 },
{ 0.01, 0.01},
{ 0.001, 0.001 }};
/*
use table to get resting voltage from remaining capacity
*/
float Battery::get_resting_voltage(float charge_pct) const
{
const float max_cell_voltage = soc_table[0].volt_per_cell;
for (uint8_t i=1; i<ARRAY_SIZE(soc_table); i++) {
if (charge_pct >= soc_table[i].soc_pct) {
// linear interpolation between table rows
float dv1 = charge_pct - soc_table[i].soc_pct;
float dv2 = soc_table[i-1].soc_pct - soc_table[i].soc_pct;
float vpc1 = soc_table[i].volt_per_cell;
float vpc2 = soc_table[i-1].volt_per_cell;
float cell_volt = vpc1 + (dv1 / dv2) * (vpc2 - vpc1);
return (cell_volt / max_cell_voltage) * max_voltage;
}
}
// off the bottom of the table, return a small non-zero to prevent math errors
return 0.001;
}
/*
use table to set initial state of charge from voltage
*/
void Battery::set_initial_SoC(float voltage)
{
const float max_cell_voltage = soc_table[0].volt_per_cell;
float cell_volt = (voltage / max_voltage) * max_cell_voltage;
for (uint8_t i=1; i<ARRAY_SIZE(soc_table); i++) {
if (cell_volt >= soc_table[i].volt_per_cell) {
// linear interpolation between table rows
float dv1 = cell_volt - soc_table[i].volt_per_cell;
float dv2 = soc_table[i-1].volt_per_cell - soc_table[i].volt_per_cell;
float soc1 = soc_table[i].soc_pct;
float soc2 = soc_table[i-1].soc_pct;
float soc = soc1 + (dv1 / dv2) * (soc2 - soc1);
remaining_Ah = capacity_Ah * soc * 0.01;
return;
}
}
// off the bottom of the table
remaining_Ah = 0;
}
void Battery::setup(float _capacity_Ah, float _resistance, float _max_voltage)
{
capacity_Ah = _capacity_Ah;
resistance = _resistance;
max_voltage = _max_voltage;
}
void Battery::init_voltage(float voltage)
{
voltage_filter.reset(voltage);
voltage_set = voltage;
set_initial_SoC(voltage);
}
void Battery::set_current(float current)
{
uint64_t now = AP_HAL::micros64();
float dt = (now - last_us) * 1.0e-6;
if (dt > 0.1) {
// we stopped updating
dt = 0;
}
last_us = now;
float delta_Ah = current * dt / 3600;
remaining_Ah -= delta_Ah;
remaining_Ah = MAX(0, remaining_Ah);
float voltage_delta = current * resistance;
float voltage;
if (!is_positive(capacity_Ah)) {
voltage = voltage_set;
} else {
voltage = get_resting_voltage(100 * remaining_Ah / capacity_Ah) - voltage_delta;
}
voltage_filter.apply(voltage);
}
float Battery::get_voltage(void) const
{
return voltage_filter.get();
}