ardupilot/libraries/AP_RangeFinder/AP_RangeFinder_uLanding.cpp

221 lines
7.1 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_RangeFinder_uLanding.h"
#include <AP_SerialManager/AP_SerialManager.h>
#include <ctype.h>
#define ULANDING_HDR 254 // Header Byte from uLanding (0xFE)
#define ULANDING_HDR_V0 72 // Header Byte for beta V0 of uLanding (0x48)
#define ULANDING_BAUD 115200
#define ULANDING_BUFSIZE_RX 128
#define ULANDING_BUFSIZE_TX 128
extern const AP_HAL::HAL& hal;
/*
The constructor also initialises the rangefinder. Note that this
constructor is not called until detect() returns true, so we
already know that we should setup the rangefinder
*/
AP_RangeFinder_uLanding::AP_RangeFinder_uLanding(RangeFinder::RangeFinder_State &_state,
AP_SerialManager &serial_manager,
uint8_t serial_instance) :
AP_RangeFinder_Backend(_state)
{
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance);
if (uart != nullptr) {
uart->begin(ULANDING_BAUD, ULANDING_BUFSIZE_RX, ULANDING_BUFSIZE_TX);
}
}
/*
detect if a uLanding rangefinder is connected. We'll detect by
trying to take a reading on Serial. If we get a result the sensor is
there.
*/
bool AP_RangeFinder_uLanding::detect(AP_SerialManager &serial_manager, uint8_t serial_instance)
{
return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr;
}
/*
detect uLanding Firmware Version
*/
bool AP_RangeFinder_uLanding::detect_version(void)
{
if (_version_known) {
// return true if we've already detected the uLanding version
return true;
} else if (uart == nullptr) {
return false;
}
bool hdr_found = false;
uint8_t byte1 = 0;
uint8_t count = 0;
// read any available data from uLanding
int16_t nbytes = uart->available();
while (nbytes-- > 0) {
uint8_t c = uart->read();
if (((c == ULANDING_HDR_V0) || (c == ULANDING_HDR)) && !hdr_found) {
byte1 = c;
hdr_found = true;
count++;
} else if (hdr_found) {
if (byte1 == ULANDING_HDR_V0) {
if (++count < 4) {
/* need to collect 4 bytes to check for recurring
* header byte in the old 3-byte data format
*/
continue;
} else {
if (c == byte1) {
// if header byte is recurring, set uLanding Version
_version = 0;
_header = ULANDING_HDR_V0;
_version_known = true;
return true;
} else {
/* if V0 header byte didn't occur again on 4th byte,
* start the search again for a header byte
*/
count = 0;
byte1 = 0;
hdr_found = false;
}
}
} else {
if ((c & 0x80) || (c == ULANDING_HDR_V0)) {
/* Though unlikely, it is possible we could find ULANDING_HDR
* in a data byte from the old 3-byte format. In this case,
* either the next byte is another data byte (which by default
* is of the form 0x1xxxxxxx), or the next byte is the old
* header byte (ULANDING_HDR_V0). In this case, start the search
* again for a header byte.
*/
count = 0;
byte1 = 0;
hdr_found = false;
} else {
/* if this second byte passes the above if statement, this byte
* is the version number
*/
_version = c;
_header = ULANDING_HDR;
_version_known = true;
return true;
}
}
}
}
/* return false if we've gone through all available data
* and haven't detected a uLanding firmware version
*/
return false;
}
// read - return last value measured by sensor
bool AP_RangeFinder_uLanding::get_reading(uint16_t &reading_cm)
{
if (uart == nullptr) {
return false;
}
if (!detect_version()) {
// return false if uLanding version check failed
return false;
}
// read any available lines from the uLanding
float sum = 0;
uint16_t count = 0;
bool hdr_found = false;
int16_t nbytes = uart->available();
while (nbytes-- > 0) {
uint8_t c = uart->read();
if ((c == _header) && !hdr_found) {
// located header byte
_linebuf_len = 0;
hdr_found = true;
}
// decode index information
if (hdr_found) {
_linebuf[_linebuf_len++] = c;
if ((_linebuf_len < (sizeof(_linebuf)/sizeof(_linebuf[0]))) ||
(_version == 0 && _linebuf_len < 3)) {
/* don't process _linebuf until we've collected six bytes of data
* (or 3 bytes for Version 0 firmware)
*/
continue;
} else {
if (_version == 0) {
// parse data for Firmware Version #0
sum += (_linebuf[2]&0x7F)*128 + (_linebuf[1]&0x7F);
count++;
} else {
// evaluate checksum
if (((_linebuf[1] + _linebuf[2] + _linebuf[3] + _linebuf[4]) & 0xFF) == _linebuf[5]) {
// if checksum passed, parse data for Firmware Version #1
sum += _linebuf[3]*256 + _linebuf[2];
count++;
}
}
hdr_found = false;
_linebuf_len = 0;
}
}
}
if (count == 0) {
return false;
}
reading_cm = sum / count;
if (_version == 0) {
reading_cm *= 2.5f;
}
return true;
}
/*
update the state of the sensor
*/
void AP_RangeFinder_uLanding::update(void)
{
if (get_reading(state.distance_cm)) {
state.last_reading_ms = AP_HAL::millis();
// update range_valid state based on distance measured
update_status();
} else if (AP_HAL::millis() - state.last_reading_ms > 200) {
set_status(RangeFinder::RangeFinder_NoData);
}
}