mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-02 14:13:42 -04:00
426 lines
13 KiB
C++
426 lines
13 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
Simulator Connector for AirSim
|
|
*/
|
|
|
|
#include "SIM_AirSim.h"
|
|
|
|
#include <stdio.h>
|
|
#include <arpa/inet.h>
|
|
#include <errno.h>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <AP_HAL/utility/replace.h>
|
|
|
|
#define UDP_TIMEOUT_MS 100
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace SITL;
|
|
|
|
AirSim::AirSim(const char *frame_str) :
|
|
Aircraft(frame_str),
|
|
sock(true)
|
|
{
|
|
if (strstr(frame_str, "-copter")) {
|
|
output_type = OutputType::Copter;
|
|
} else if (strstr(frame_str, "-rover")) {
|
|
output_type = OutputType::Rover;
|
|
} else {
|
|
// default to copter
|
|
output_type = OutputType::Copter;
|
|
}
|
|
|
|
printf("Starting SITL Airsim type %u\n", (unsigned)output_type);
|
|
}
|
|
|
|
/*
|
|
Create & set in/out socket
|
|
*/
|
|
void AirSim::set_interface_ports(const char* address, const int port_in, const int port_out)
|
|
{
|
|
if (!sock.bind("0.0.0.0", port_in)) {
|
|
printf("Unable to bind Airsim sensor_in socket at port %u - Error: %s\n",
|
|
port_in, strerror(errno));
|
|
return;
|
|
}
|
|
printf("Bind SITL sensor input at %s:%u\n", "127.0.0.1", port_in);
|
|
sock.set_blocking(false);
|
|
sock.reuseaddress();
|
|
|
|
airsim_ip = address;
|
|
airsim_control_port = port_out;
|
|
airsim_sensor_port = port_in;
|
|
|
|
printf("AirSim control interface set to %s:%u\n", airsim_ip, airsim_control_port);
|
|
}
|
|
|
|
/*
|
|
Decode and send servos
|
|
*/
|
|
void AirSim::output_copter(const sitl_input& input)
|
|
{
|
|
servo_packet pkt;
|
|
|
|
for (uint8_t i=0; i<kArduCopterRotorControlCount; i++) {
|
|
pkt.pwm[i] = input.servos[i];
|
|
}
|
|
|
|
ssize_t send_ret = sock.sendto(&pkt, sizeof(pkt), airsim_ip, airsim_control_port);
|
|
if (send_ret != sizeof(pkt)) {
|
|
if (send_ret <= 0) {
|
|
printf("Unable to send servo output to %s:%u - Error: %s, Return value: %ld\n",
|
|
airsim_ip, airsim_control_port, strerror(errno), (long)send_ret);
|
|
} else {
|
|
printf("Sent %ld bytes instead of %lu bytes\n", (long)send_ret, (unsigned long)sizeof(pkt));
|
|
}
|
|
}
|
|
}
|
|
|
|
void AirSim::output_rover(const sitl_input& input)
|
|
{
|
|
rover_packet pkt;
|
|
|
|
pkt.steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
pkt.throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
|
|
ssize_t send_ret = sock.sendto(&pkt, sizeof(pkt), airsim_ip, airsim_control_port);
|
|
if (send_ret != sizeof(pkt)) {
|
|
if (send_ret <= 0) {
|
|
printf("Unable to send control output to %s:%u - Error: %s, Return value: %ld\n",
|
|
airsim_ip, airsim_control_port, strerror(errno), (long)send_ret);
|
|
} else {
|
|
printf("Sent %ld bytes instead of %lu bytes\n", (long)send_ret, (unsigned long)sizeof(pkt));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Wrapper function to send servo output
|
|
*/
|
|
void AirSim::output_servos(const sitl_input& input)
|
|
{
|
|
switch (output_type) {
|
|
case OutputType::Copter:
|
|
output_copter(input);
|
|
break;
|
|
|
|
case OutputType::Rover:
|
|
output_rover(input);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
very simple JSON parser for sensor data
|
|
called with pointer to one row of sensor data, nul terminated
|
|
|
|
This parser does not do any syntax checking, and is not at all
|
|
general purpose
|
|
*/
|
|
bool AirSim::parse_sensors(const char *json)
|
|
{
|
|
// printf("%s\n", json);
|
|
for (uint16_t i=0; i<ARRAY_SIZE(keytable); i++) {
|
|
struct keytable &key = keytable[i];
|
|
|
|
/* look for section header */
|
|
const char *p = strstr(json, key.section);
|
|
if (!p) {
|
|
// we don't have this sensor
|
|
continue;
|
|
}
|
|
p += strlen(key.section)+1;
|
|
|
|
// find key inside section
|
|
p = strstr(p, key.key);
|
|
if (!p) {
|
|
printf("Failed to find key %s/%s\n", key.section, key.key);
|
|
return false;
|
|
}
|
|
|
|
p += strlen(key.key)+3;
|
|
switch (key.type) {
|
|
case DATA_UINT64:
|
|
*((uint64_t *)key.ptr) = strtoul(p, nullptr, 10);
|
|
break;
|
|
|
|
case DATA_FLOAT:
|
|
*((float *)key.ptr) = atof(p);
|
|
break;
|
|
|
|
case DATA_DOUBLE:
|
|
*((double *)key.ptr) = atof(p);
|
|
break;
|
|
|
|
case DATA_VECTOR3F: {
|
|
Vector3f *v = (Vector3f *)key.ptr;
|
|
if (sscanf(p, "[%f, %f, %f]", &v->x, &v->y, &v->z) != 3) {
|
|
printf("Failed to parse Vector3f for %s/%s\n", key.section, key.key);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DATA_VECTOR3F_ARRAY: {
|
|
// - array of floats that represent [x,y,z] coordinate for each point hit within the range
|
|
// x0, y0, z0, x1, y1, z1, ..., xn, yn, zn
|
|
// example: [23.1,0.677024,1.4784,-8.97607135772705,-8.976069450378418,-8.642673492431641e-07,]
|
|
if (*p++ != '[') {
|
|
return false;
|
|
}
|
|
uint16_t n = 0;
|
|
vector3f_array *v = (vector3f_array *)key.ptr;
|
|
while (true) {
|
|
if (n >= v->length) {
|
|
Vector3f *d = (Vector3f *)realloc(v->data, sizeof(Vector3f)*(n+1));
|
|
if (d == nullptr) {
|
|
return false;
|
|
}
|
|
v->data = d;
|
|
v->length = n+1;
|
|
}
|
|
if (sscanf(p, "%f,%f,%f,", &v->data[n].x, &v->data[n].y, &v->data[n].z) != 3) {
|
|
printf("Failed to parse Vector3f for %s/%s[%u]\n", key.section, key.key, n);
|
|
return false;
|
|
}
|
|
n++;
|
|
// Goto 3rd occurence of ,
|
|
p = strchr(p,',');
|
|
if (!p) {
|
|
return false;
|
|
}
|
|
p++;
|
|
p = strchr(p,',');
|
|
if (!p) {
|
|
return false;
|
|
}
|
|
p++;
|
|
p = strchr(p,',');
|
|
if (!p) {
|
|
return false;
|
|
}
|
|
p++;
|
|
// Reached end of point cloud
|
|
if (p[0] == ']') {
|
|
break;
|
|
}
|
|
}
|
|
v->length = n;
|
|
break;
|
|
}
|
|
|
|
case DATA_FLOAT_ARRAY: {
|
|
// example: [18.0, 12.694079399108887]
|
|
if (*p++ != '[') {
|
|
return false;
|
|
}
|
|
uint16_t n = 0;
|
|
float_array *v = (float_array *)key.ptr;
|
|
while (true) {
|
|
if (n >= v->length) {
|
|
float *d = (float *)realloc(v->data, sizeof(float)*(n+1));
|
|
if (d == nullptr) {
|
|
return false;
|
|
}
|
|
v->data = d;
|
|
v->length = n+1;
|
|
}
|
|
v->data[n] = atof(p);
|
|
n++;
|
|
p = strchr(p,',');
|
|
if (!p) {
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
v->length = n;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Receive new sensor data from simulator
|
|
This is a blocking function
|
|
*/
|
|
void AirSim::recv_fdm(const sitl_input& input)
|
|
{
|
|
// Receive sensor packet
|
|
ssize_t ret = sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, UDP_TIMEOUT_MS);
|
|
uint32_t wait_ms = UDP_TIMEOUT_MS;
|
|
while (ret <= 0) {
|
|
// printf("No sensor message received - %s\n", strerror(errno));
|
|
ret = sock.recv(&sensor_buffer[sensor_buffer_len], sizeof(sensor_buffer)-sensor_buffer_len, UDP_TIMEOUT_MS);
|
|
wait_ms += UDP_TIMEOUT_MS;
|
|
|
|
// If no sensor message is received after 1 second, resend servos
|
|
// this helps if messages are lost on the way, and both AP & Airsim are waiting for each ther
|
|
if (wait_ms > 1000) {
|
|
wait_ms = 0;
|
|
printf("No sensor message received in last 1s, error - %s, resending servos\n", strerror(errno));
|
|
output_servos(input);
|
|
}
|
|
}
|
|
|
|
// convert '\n' into nul
|
|
while (uint8_t *p = (uint8_t *)memchr(&sensor_buffer[sensor_buffer_len], '\n', ret)) {
|
|
*p = 0;
|
|
}
|
|
sensor_buffer_len += ret;
|
|
|
|
const uint8_t *p2 = (const uint8_t *)memrchr(sensor_buffer, 0, sensor_buffer_len);
|
|
if (p2 == nullptr || p2 == sensor_buffer) {
|
|
return;
|
|
}
|
|
const uint8_t *p1 = (const uint8_t *)memrchr(sensor_buffer, 0, p2 - sensor_buffer);
|
|
if (p1 == nullptr) {
|
|
return;
|
|
}
|
|
|
|
parse_sensors((const char *)(p1+1));
|
|
|
|
memmove(sensor_buffer, p2, sensor_buffer_len - (p2 - sensor_buffer));
|
|
sensor_buffer_len = sensor_buffer_len - (p2 - sensor_buffer);
|
|
|
|
accel_body = state.imu.linear_acceleration;
|
|
gyro = state.imu.angular_velocity;
|
|
velocity_ef = state.velocity.world_linear_velocity;
|
|
|
|
location.lat = state.gps.lat * 1.0e7;
|
|
location.lng = state.gps.lon * 1.0e7;
|
|
location.alt = state.gps.alt * 100.0f;
|
|
|
|
position = home.get_distance_NED_double(location);
|
|
|
|
dcm.from_euler(state.pose.roll, state.pose.pitch, state.pose.yaw);
|
|
|
|
if (last_timestamp) {
|
|
int deltat = state.timestamp - last_timestamp;
|
|
time_now_us += deltat;
|
|
|
|
if (deltat > 0 && deltat < 100000) {
|
|
if (average_frame_time < 1) {
|
|
average_frame_time = deltat;
|
|
}
|
|
average_frame_time = average_frame_time * 0.98 + deltat * 0.02;
|
|
}
|
|
}
|
|
|
|
scanner.points = state.lidar.points;
|
|
|
|
// Update RC input, max 12 channels
|
|
rcin_chan_count = MIN(state.rc.rc_channels.length, 12);
|
|
for (uint8_t i=0; i < rcin_chan_count; i++) {
|
|
rcin[i] = state.rc.rc_channels.data[i];
|
|
}
|
|
|
|
// Update Rangefinder data, max sensors limit as defined
|
|
uint8_t rng_sensor_count = MIN(state.rng.rng_distances.length, RANGEFINDER_MAX_INSTANCES);
|
|
for (uint8_t i=0; i<rng_sensor_count; i++) {
|
|
rangefinder_m[i] = state.rng.rng_distances.data[i];
|
|
}
|
|
|
|
#if 0
|
|
// @LoggerMessage: ASM1
|
|
// @Description: AirSim simulation data
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: TUS: Simulation's timestamp
|
|
// @Field: R: Simulation's roll
|
|
// @Field: P: Simulation's pitch
|
|
// @Field: Y: Simulation's yaw
|
|
// @Field: GX: Simulated gyroscope, X-axis
|
|
// @Field: GY: Simulated gyroscope, Y-axis
|
|
// @Field: GZ: Simulated gyroscope, Z-axis
|
|
AP::logger().Write("ASM1", "TimeUS,TUS,R,P,Y,GX,GY,GZ",
|
|
"QQffffff",
|
|
AP_HAL::micros64(),
|
|
state.timestamp,
|
|
degrees(state.pose.roll),
|
|
degrees(state.pose.pitch),
|
|
degrees(state.pose.yaw),
|
|
degrees(gyro.x),
|
|
degrees(gyro.y),
|
|
degrees(gyro.z));
|
|
|
|
Vector3f velocity_bf = dcm.transposed() * velocity_ef;
|
|
|
|
// @LoggerMessage: ASM2
|
|
// @Description: More AirSim simulation data
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: AX: simulation's acceleration, X-axis
|
|
// @Field: AY: simulation's acceleration, Y-axis
|
|
// @Field: AZ: simulation's acceleration, Z-axis
|
|
// @Field: VX: simulation's velocity, X-axis
|
|
// @Field: VY: simulation's velocity, Y-axis
|
|
// @Field: VZ: simulation's velocity, Z-axis
|
|
// @Field: PX: simulation's position, X-axis
|
|
// @Field: PY: simulation's position, Y-axis
|
|
// @Field: PZ: simulation's position, Z-axis
|
|
// @Field: Alt: simulation's gps altitude
|
|
// @Field: SD: simulation's earth-frame speed-down
|
|
AP::logger().Write("ASM2", "TimeUS,AX,AY,AZ,VX,VY,VZ,PX,PY,PZ,Alt,SD",
|
|
"Qfffffffffff",
|
|
AP_HAL::micros64(),
|
|
accel_body.x,
|
|
accel_body.y,
|
|
accel_body.z,
|
|
velocity_bf.x,
|
|
velocity_bf.y,
|
|
velocity_bf.z,
|
|
position.x,
|
|
position.y,
|
|
position.z,
|
|
state.gps.alt,
|
|
velocity_ef.z);
|
|
#endif
|
|
|
|
last_timestamp = state.timestamp;
|
|
}
|
|
|
|
/*
|
|
update the AirSim simulation by one time step
|
|
*/
|
|
void AirSim::update(const sitl_input& input)
|
|
{
|
|
// Send servos to AirSim
|
|
output_servos(input);
|
|
|
|
// Receive sensor data
|
|
recv_fdm(input);
|
|
|
|
// update magnetic field
|
|
update_mag_field_bf();
|
|
|
|
report_FPS();
|
|
}
|
|
|
|
/*
|
|
report frame rates
|
|
*/
|
|
void AirSim::report_FPS(void)
|
|
{
|
|
if (frame_counter++ % 1000 == 0) {
|
|
if (last_frame_count != 0) {
|
|
printf("FPS avg=%.2f\n", 1.0e6/average_frame_time);
|
|
}
|
|
last_frame_count = state.timestamp;
|
|
}
|
|
}
|