ardupilot/libraries/AP_Frsky_Telem/AP_Frsky_Telem.cpp
2017-10-27 02:00:29 -07:00

907 lines
38 KiB
C++

/*
Inspired by work done here https://github.com/PX4/Firmware/tree/master/src/drivers/frsky_telemetry from Stefan Rado <px4@sradonia.net>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
FRSKY Telemetry library
*/
#include "AP_Frsky_Telem.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
ObjectArray<mavlink_statustext_t> AP_Frsky_Telem::_statustext_queue(FRSKY_TELEM_PAYLOAD_STATUS_CAPACITY);
//constructor
AP_Frsky_Telem::AP_Frsky_Telem(AP_AHRS &ahrs, const AP_BattMonitor &battery, const RangeFinder &rng) :
_ahrs(ahrs),
_battery(battery),
_rng(rng)
{}
/*
* init - perform required initialisation
*/
void AP_Frsky_Telem::init(const AP_SerialManager &serial_manager, const char *firmware_str, const uint8_t mav_type, const AP_Float *fs_batt_voltage, const AP_Float *fs_batt_mah, const uint32_t *ap_valuep)
{
// check for protocol configured for a serial port - only the first serial port with one of these protocols will then run (cannot have FrSky on multiple serial ports)
if ((_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FrSky_D, 0))) {
_protocol = AP_SerialManager::SerialProtocol_FrSky_D; // FrSky D protocol (D-receivers)
} else if ((_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FrSky_SPort, 0))) {
_protocol = AP_SerialManager::SerialProtocol_FrSky_SPort; // FrSky SPort protocol (X-receivers)
} else if ((_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FrSky_SPort_Passthrough, 0))) {
_protocol = AP_SerialManager::SerialProtocol_FrSky_SPort_Passthrough; // FrSky SPort and SPort Passthrough (OpenTX) protocols (X-receivers)
// make frsky_telemetry available to GCS_MAVLINK (used to queue statustext messages from GCS_MAVLINK)
gcs().register_frsky_telemetry_callback(this);
// add firmware and frame info to message queue
queue_message(MAV_SEVERITY_INFO, firmware_str);
// save main parameters locally
_params.mav_type = mav_type; // frame type (see MAV_TYPE in Mavlink definition file common.h)
_params.fs_batt_voltage = fs_batt_voltage; // failsafe battery voltage in volts
_params.fs_batt_mah = fs_batt_mah; // failsafe reserve capacity in mAh
if (ap_valuep == nullptr) { // ap bit-field
_ap.value = 0x2000; // set "initialised" to 1 for rover and plane
_ap.valuep = &_ap.value;
} else {
_ap.valuep = ap_valuep;
}
}
if (_port != nullptr) {
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_Frsky_Telem::tick, void));
// we don't want flow control for either protocol
_port->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
}
}
/*
* send telemetry data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_Telem::send_SPort_Passthrough(void)
{
int16_t numc;
numc = _port->available();
// check if available is negative
if (numc < 0) {
return;
}
// this is the constant for hub data frame
if (_port->txspace() < 19) {
return;
}
// keep only the last two bytes of the data found in the serial buffer, as we shouldn't respond to old poll requests
uint8_t prev_byte = 0;
for (int16_t i = 0; i < numc; i++) {
prev_byte = _passthrough.new_byte;
_passthrough.new_byte = _port->read();
}
if ((prev_byte == START_STOP_SPORT) && (_passthrough.new_byte == SENSOR_ID_28)) { // byte 0x7E is the header of each poll request
if (_passthrough.send_attiandrng) { // skip other data, send attitude (roll, pitch) and range only this iteration
_passthrough.send_attiandrng = false; // next iteration, check if we should send something other
} else { // send other sensor data if it's time for them, and reset the corresponding timer if sent
_passthrough.send_attiandrng = true; // next iteration, send attitude b/c it needs frequent updates to remain smooth
uint32_t now = AP_HAL::millis();
if ((now - _passthrough.params_timer) >= 1000) {
send_uint32(DIY_FIRST_ID+7, calc_param());
_passthrough.params_timer = AP_HAL::millis();
return;
}
// build message queue for sensor_status_flags
check_sensor_status_flags();
// build message queue for ekf_status
check_ekf_status();
// if there's any message in the queue, start sending them chunk by chunk; three times each chunk
if (get_next_msg_chunk()) {
send_uint32(DIY_FIRST_ID, _msg_chunk.chunk);
return;
}
if ((now - _passthrough.ap_status_timer) >= 500) {
if (((*_ap.valuep) & AP_INITIALIZED_FLAG) > 0) { // send ap status only once vehicle has been initialised
send_uint32(DIY_FIRST_ID+1, calc_ap_status());
_passthrough.ap_status_timer = AP_HAL::millis();
}
return;
}
if ((now - _passthrough.batt_timer) >= 1000) {
send_uint32(DIY_FIRST_ID+3, calc_batt(0));
_passthrough.batt_timer = AP_HAL::millis();
return;
}
if (_battery.num_instances() > 1) {
if ((now - _passthrough.batt_timer2) >= 1000) {
send_uint32(DIY_FIRST_ID+8, calc_batt(1));
_passthrough.batt_timer2 = AP_HAL::millis();
return;
}
}
if ((now - _passthrough.gps_status_timer) >= 1000) {
send_uint32(DIY_FIRST_ID+2, calc_gps_status());
_passthrough.gps_status_timer = AP_HAL::millis();
return;
}
if ((now - _passthrough.home_timer) >= 500) {
send_uint32(DIY_FIRST_ID+4, calc_home());
_passthrough.home_timer = AP_HAL::millis();
return;
}
if ((now - _passthrough.velandyaw_timer) >= 500) {
send_uint32(DIY_FIRST_ID+5, calc_velandyaw());
_passthrough.velandyaw_timer = AP_HAL::millis();
return;
}
if ((now - _passthrough.gps_latlng_timer) >= 1000) {
send_uint32(GPS_LONG_LATI_FIRST_ID, calc_gps_latlng(&_passthrough.send_latitude)); // gps latitude or longitude
if (!_passthrough.send_latitude) { // we've cycled and sent one each of longitude then latitude, so reset the timer
_passthrough.gps_latlng_timer = AP_HAL::millis();
}
return;
}
}
// if nothing else needed to be sent, send attitude (roll, pitch) and range data
send_uint32(DIY_FIRST_ID+6, calc_attiandrng());
}
}
/*
* send telemetry data
* for FrSky SPort protocol (X-receivers)
*/
void AP_Frsky_Telem::send_SPort(void)
{
int16_t numc;
numc = _port->available();
// check if available is negative
if (numc < 0) {
return;
}
// this is the constant for hub data frame
if (_port->txspace() < 19) {
return;
}
for (int16_t i = 0; i < numc; i++) {
int16_t readbyte = _port->read();
if (_SPort.sport_status == false) {
if (readbyte == START_STOP_SPORT) {
_SPort.sport_status = true;
}
} else {
switch(readbyte) {
case SENSOR_ID_FAS:
switch (_SPort.fas_call) {
case 0:
send_uint32(DATA_ID_FUEL, (uint16_t)roundf(_battery.capacity_remaining_pct())); // send battery remaining
break;
case 1:
send_uint32(DATA_ID_VFAS, (uint16_t)roundf(_battery.voltage() * 10.0f)); // send battery voltage
break;
case 2:
send_uint32(DATA_ID_CURRENT, (uint16_t)roundf(_battery.current_amps() * 10.0f)); // send current consumption
break;
}
if (_SPort.fas_call++ > 2) _SPort.fas_call = 0;
break;
case SENSOR_ID_GPS:
switch (_SPort.gps_call) {
case 0:
calc_gps_position(); // gps data is not recalculated until all of it has been sent
send_uint32(DATA_ID_GPS_LAT_BP, _gps.latdddmm); // send gps lattitude degree and minute integer part
break;
case 1:
send_uint32(DATA_ID_GPS_LAT_AP, _gps.latmmmm); // send gps lattitude minutes decimal part
break;
case 2:
send_uint32(DATA_ID_GPS_LAT_NS, _gps.lat_ns); // send gps North / South information
break;
case 3:
send_uint32(DATA_ID_GPS_LONG_BP, _gps.londddmm); // send gps longitude degree and minute integer part
break;
case 4:
send_uint32(DATA_ID_GPS_LONG_AP, _gps.lonmmmm); // send gps longitude minutes decimal part
break;
case 5:
send_uint32(DATA_ID_GPS_LONG_EW, _gps.lon_ew); // send gps East / West information
break;
case 6:
send_uint32(DATA_ID_GPS_SPEED_BP, _gps.speed_in_meter); // send gps speed integer part
break;
case 7:
send_uint32(DATA_ID_GPS_SPEED_AP, _gps.speed_in_centimeter); // send gps speed decimal part
break;
case 8:
send_uint32(DATA_ID_GPS_ALT_BP, _gps.alt_gps_meters); // send gps altitude integer part
break;
case 9:
send_uint32(DATA_ID_GPS_ALT_AP, _gps.alt_gps_cm); // send gps altitude decimals
break;
case 10:
send_uint32(DATA_ID_GPS_COURS_BP, (uint16_t)((_ahrs.yaw_sensor / 100) % 360)); // send heading in degree based on AHRS and not GPS
break;
}
if (_SPort.gps_call++ > 10) _SPort.gps_call = 0;
break;
case SENSOR_ID_VARIO:
switch (_SPort.vario_call) {
case 0 :
calc_nav_alt(); // nav altitude is not recalculated until all of it has been sent
send_uint32(DATA_ID_BARO_ALT_BP, _gps.alt_nav_meters); // send altitude integer part
break;
case 1:
send_uint32(DATA_ID_BARO_ALT_AP, _gps.alt_nav_cm); // send altitude decimal part
break;
}
if (_SPort.vario_call++ > 1) _SPort.vario_call = 0;
break;
case SENSOR_ID_SP2UR:
switch (_SPort.various_call) {
case 0 :
send_uint32(DATA_ID_TEMP2, (uint16_t)(_ahrs.get_gps().num_sats() * 10 + _ahrs.get_gps().status())); // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t)
break;
case 1:
send_uint32(DATA_ID_TEMP1, _ap.control_mode); // send flight mode
break;
}
if (_SPort.various_call++ > 1) _SPort.various_call = 0;
break;
}
_SPort.sport_status = false;
}
}
}
/*
* send frame1 and frame2 telemetry data
* one frame (frame1) is sent every 200ms with baro alt, nb sats, batt volts and amp, control_mode
* a second frame (frame2) is sent every second (1000ms) with gps position data, and ahrs.yaw_sensor heading (instead of GPS heading)
* for FrSky D protocol (D-receivers)
*/
void AP_Frsky_Telem::send_D(void)
{
uint32_t now = AP_HAL::millis();
// send frame1 every 200ms
if (now - _D.last_200ms_frame >= 200) {
_D.last_200ms_frame = now;
send_uint16(DATA_ID_TEMP2, (uint16_t)(_ahrs.get_gps().num_sats() * 10 + _ahrs.get_gps().status())); // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t)
send_uint16(DATA_ID_TEMP1, _ap.control_mode); // send flight mode
send_uint16(DATA_ID_FUEL, (uint16_t)roundf(_battery.capacity_remaining_pct())); // send battery remaining
send_uint16(DATA_ID_VFAS, (uint16_t)roundf(_battery.voltage() * 10.0f)); // send battery voltage
send_uint16(DATA_ID_CURRENT, (uint16_t)roundf(_battery.current_amps() * 10.0f)); // send current consumption
calc_nav_alt();
send_uint16(DATA_ID_BARO_ALT_BP, _gps.alt_nav_meters); // send nav altitude integer part
send_uint16(DATA_ID_BARO_ALT_AP, _gps.alt_nav_cm); // send nav altitude decimal part
}
// send frame2 every second
if (now - _D.last_1000ms_frame >= 1000) {
_D.last_1000ms_frame = now;
send_uint16(DATA_ID_GPS_COURS_BP, (uint16_t)((_ahrs.yaw_sensor / 100) % 360)); // send heading in degree based on AHRS and not GPS
calc_gps_position();
if (_ahrs.get_gps().status() >= 3) {
send_uint16(DATA_ID_GPS_LAT_BP, _gps.latdddmm); // send gps lattitude degree and minute integer part
send_uint16(DATA_ID_GPS_LAT_AP, _gps.latmmmm); // send gps lattitude minutes decimal part
send_uint16(DATA_ID_GPS_LAT_NS, _gps.lat_ns); // send gps North / South information
send_uint16(DATA_ID_GPS_LONG_BP, _gps.londddmm); // send gps longitude degree and minute integer part
send_uint16(DATA_ID_GPS_LONG_AP, _gps.lonmmmm); // send gps longitude minutes decimal part
send_uint16(DATA_ID_GPS_LONG_EW, _gps.lon_ew); // send gps East / West information
send_uint16(DATA_ID_GPS_SPEED_BP, _gps.speed_in_meter); // send gps speed integer part
send_uint16(DATA_ID_GPS_SPEED_AP, _gps.speed_in_centimeter); // send gps speed decimal part
send_uint16(DATA_ID_GPS_ALT_BP, _gps.alt_gps_meters); // send gps altitude integer part
send_uint16(DATA_ID_GPS_ALT_AP, _gps.alt_gps_cm); // send gps altitude decimal part
}
}
}
/*
* tick - main call to send data to the receiver (called by scheduler at 1kHz)
*/
void AP_Frsky_Telem::tick(void)
{
// check UART has been initialised
if (!_initialised_uart) {
// initialise uart (this must be called from within tick b/c the UART begin must be called from the same thread as it is used from)
if (_protocol == AP_SerialManager::SerialProtocol_FrSky_D) { // FrSky D protocol (D-receivers)
_port->begin(AP_SERIALMANAGER_FRSKY_D_BAUD, AP_SERIALMANAGER_FRSKY_BUFSIZE_RX, AP_SERIALMANAGER_FRSKY_BUFSIZE_TX);
} else { // FrSky SPort and SPort Passthrough (OpenTX) protocols (X-receivers)
_port->begin(AP_SERIALMANAGER_FRSKY_SPORT_BAUD, AP_SERIALMANAGER_FRSKY_BUFSIZE_RX, AP_SERIALMANAGER_FRSKY_BUFSIZE_TX);
}
_initialised_uart = true;// true when we have detected the protocol and UART has been initialised
}
if (_protocol == AP_SerialManager::SerialProtocol_FrSky_D) { // FrSky D protocol (D-receivers)
send_D();
} else if (_protocol == AP_SerialManager::SerialProtocol_FrSky_SPort) { // FrSky SPort protocol (X-receivers)
send_SPort();
} else if (_protocol == AP_SerialManager::SerialProtocol_FrSky_SPort_Passthrough) { // FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
send_SPort_Passthrough();
}
}
/*
* build up the frame's crc
* for FrSky SPort protocol (X-receivers)
*/
void AP_Frsky_Telem::calc_crc(uint8_t byte)
{
_crc += byte; //0-1FF
_crc += _crc >> 8; //0-100
_crc &= 0xFF;
}
/*
* send the frame's crc at the end of the frame
* for FrSky SPort protocol (X-receivers)
*/
void AP_Frsky_Telem::send_crc(void)
{
send_byte(0xFF - _crc);
_crc = 0;
}
/*
send 1 byte and do byte stuffing
*/
void AP_Frsky_Telem::send_byte(uint8_t byte)
{
if (_protocol == AP_SerialManager::SerialProtocol_FrSky_D) { // FrSky D protocol (D-receivers)
if (byte == START_STOP_D) {
_port->write(0x5D);
_port->write(0x3E);
} else if (byte == BYTESTUFF_D) {
_port->write(0x5D);
_port->write(0x3D);
} else {
_port->write(byte);
}
} else { // FrSky SPort protocol (X-receivers)
if (byte == START_STOP_SPORT) {
_port->write(0x7D);
_port->write(0x5E);
} else if (byte == BYTESTUFF_SPORT) {
_port->write(0x7D);
_port->write(0x5D);
} else {
_port->write(byte);
}
calc_crc(byte);
}
}
/*
* send one uint32 frame of FrSky data - for FrSky SPort protocol (X-receivers)
*/
void AP_Frsky_Telem::send_uint32(uint16_t id, uint32_t data)
{
send_byte(0x10); // DATA_FRAME
uint8_t *bytes = (uint8_t*)&id;
send_byte(bytes[0]); // LSB
send_byte(bytes[1]); // MSB
bytes = (uint8_t*)&data;
send_byte(bytes[0]); // LSB
send_byte(bytes[1]);
send_byte(bytes[2]);
send_byte(bytes[3]); // MSB
send_crc();
}
/*
* send one uint16 frame of FrSky data - for FrSky D protocol (D-receivers)
*/
void AP_Frsky_Telem::send_uint16(uint16_t id, uint16_t data)
{
_port->write(START_STOP_D); // send a 0x5E start byte
uint8_t *bytes = (uint8_t*)&id;
send_byte(bytes[0]);
bytes = (uint8_t*)&data;
send_byte(bytes[0]); // LSB
send_byte(bytes[1]); // MSB
}
/*
* grabs one "chunk" (4 bytes) of the queued message to be transmitted
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
bool AP_Frsky_Telem::get_next_msg_chunk(void)
{
if (_statustext_queue.empty()) {
return false;
}
if (_msg_chunk.repeats == 0) { // if it's the first time get_next_msg_chunk is called for a given chunk
uint8_t character = 0;
_msg_chunk.chunk = 0; // clear the 4 bytes of the chunk buffer
for (int i = 3; i > -1 && _msg_chunk.char_index < sizeof(_statustext_queue[0]->text); i--) {
character = _statustext_queue[0]->text[_msg_chunk.char_index++];
if (!character) {
break;
}
_msg_chunk.chunk |= character << i * 8;
}
if (!character || (_msg_chunk.char_index == sizeof(_statustext_queue[0]->text))) { // we've reached the end of the message (string terminated by '\0' or last character of the string has been processed)
_msg_chunk.char_index = 0; // reset index to get ready to process the next message
// add severity which is sent as the MSB of the last three bytes of the last chunk (bits 24, 16, and 8) since a character is on 7 bits
_msg_chunk.chunk |= (_statustext_queue[0]->severity & 0x4)<<21;
_msg_chunk.chunk |= (_statustext_queue[0]->severity & 0x2)<<14;
_msg_chunk.chunk |= (_statustext_queue[0]->severity & 0x1)<<7;
}
}
if (_msg_chunk.repeats++ > 2) { // repeat each message chunk 3 times to ensure transmission
_msg_chunk.repeats = 0;
if (_msg_chunk.char_index == 0) { // if we're ready for the next message
_statustext_queue.remove(0);
}
}
return true;
}
/*
* add message to message cue for transmission through FrSky link
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_Telem::queue_message(MAV_SEVERITY severity, const char *text)
{
mavlink_statustext_t statustext{};
statustext.severity = severity;
strncpy(statustext.text, text, sizeof(statustext.text));
// The force push will ensure comm links do not block other comm links forever if they fail.
// If we push to a full buffer then we overwrite the oldest entry, effectively removing the
// block but not until the buffer fills up.
_statustext_queue.push_force(statustext);
}
/*
* add sensor_status_flags information to message cue, normally passed as sys_status mavlink messages to the GCS, for transmission through FrSky link
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_Telem::check_sensor_status_flags(void)
{
uint32_t now = AP_HAL::millis();
if ((now - check_sensor_status_timer) >= 5000) { // prevent repeating any system_status messages unless 5 seconds have passed
// only one error is reported at a time (in order of preference). Same setup and displayed messages as Mission Planner.
if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_GPS) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad GPS Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_3D_GYRO) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad Gyro Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_3D_ACCEL) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad Accel Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_3D_MAG) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad Compass Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad Baro Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_LASER_POSITION) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad LiDAR Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad OptFlow Health");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_TERRAIN) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad or No Terrain Data");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_GEOFENCE) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Geofence Breach");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_AHRS) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad AHRS");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_SENSOR_RC_RECEIVER) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "No RC Receiver");
check_sensor_status_timer = now;
} else if ((_ap.sensor_status_flags & MAV_SYS_STATUS_LOGGING) > 0) {
queue_message(MAV_SEVERITY_CRITICAL, "Bad Logging");
check_sensor_status_timer = now;
}
}
}
/*
* add innovation variance information to message cue, normally passed as ekf_status_report mavlink messages to the GCS, for transmission through FrSky link
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
void AP_Frsky_Telem::check_ekf_status(void)
{
// get variances
float velVar, posVar, hgtVar, tasVar;
Vector3f magVar;
Vector2f offset;
if (_ahrs.get_variances(velVar, posVar, hgtVar, magVar, tasVar, offset)) {
uint32_t now = AP_HAL::millis();
if ((now - check_ekf_status_timer) >= 10000) { // prevent repeating any ekf_status message unless 10 seconds have passed
// multiple errors can be reported at a time. Same setup as Mission Planner.
if (velVar >= 1) {
queue_message(MAV_SEVERITY_CRITICAL, "Error velocity variance");
check_ekf_status_timer = now;
}
if (posVar >= 1) {
queue_message(MAV_SEVERITY_CRITICAL, "Error pos horiz variance");
check_ekf_status_timer = now;
}
if (hgtVar >= 1) {
queue_message(MAV_SEVERITY_CRITICAL, "Error pos vert variance");
check_ekf_status_timer = now;
}
if (magVar.length() >= 1) {
queue_message(MAV_SEVERITY_CRITICAL, "Error compass variance");
check_ekf_status_timer = now;
}
if (tasVar >= 1) {
queue_message(MAV_SEVERITY_CRITICAL, "Error terrain alt variance");
check_ekf_status_timer = now;
}
}
}
}
/*
* prepare parameter data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_param(void)
{
uint32_t param = 0;
// cycle through paramIDs
if (_paramID >= 5) {
_paramID = 0;
}
_paramID++;
switch(_paramID) {
case 1:
param = _params.mav_type; // frame type (see MAV_TYPE in Mavlink definition file common.h)
break;
case 2:
if (_params.fs_batt_voltage != nullptr) {
param = (uint32_t)roundf((*_params.fs_batt_voltage) * 100.0f); // battery failsafe voltage in centivolts
}
break;
case 3:
if (_params.fs_batt_mah != nullptr) {
param = (uint32_t)roundf((*_params.fs_batt_mah)); // battery failsafe capacity in mAh
}
break;
case 4:
param = (uint32_t)roundf(_battery.pack_capacity_mah(0)); // battery pack capacity in mAh
break;
case 5:
param = (uint32_t)roundf(_battery.pack_capacity_mah(1)); // battery pack capacity in mAh
break;
}
//Reserve first 8 bits for param ID, use other 24 bits to store parameter value
param = (_paramID << PARAM_ID_OFFSET) | (param & PARAM_VALUE_LIMIT);
return param;
}
/*
* prepare gps latitude/longitude data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_gps_latlng(bool *send_latitude)
{
uint32_t latlng;
const Location &loc = _ahrs.get_gps().location(0); // use the first gps instance (same as in send_mavlink_gps_raw)
// alternate between latitude and longitude
if ((*send_latitude) == true) {
if (loc.lat < 0) {
latlng = ((abs(loc.lat)/100)*6) | 0x40000000;
} else {
latlng = ((abs(loc.lat)/100)*6);
}
(*send_latitude) = false;
} else {
if (loc.lng < 0) {
latlng = ((abs(loc.lng)/100)*6) | 0xC0000000;
} else {
latlng = ((abs(loc.lng)/100)*6) | 0x80000000;
}
(*send_latitude) = true;
}
return latlng;
}
/*
* prepare gps status data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_gps_status(void)
{
uint32_t gps_status;
// number of GPS satellites visible (limit to 15 (0xF) since the value is stored on 4 bits)
gps_status = (_ahrs.get_gps().num_sats() < GPS_SATS_LIMIT) ? _ahrs.get_gps().num_sats() : GPS_SATS_LIMIT;
// GPS receiver status (limit to 0-3 (0x3) since the value is stored on 2 bits: NO_GPS = 0, NO_FIX = 1, GPS_OK_FIX_2D = 2, GPS_OK_FIX_3D or GPS_OK_FIX_3D_DGPS or GPS_OK_FIX_3D_RTK_FLOAT or GPS_OK_FIX_3D_RTK_FIXED = 3)
gps_status |= ((_ahrs.get_gps().status() < GPS_STATUS_LIMIT) ? _ahrs.get_gps().status() : GPS_STATUS_LIMIT)<<GPS_STATUS_OFFSET;
// GPS horizontal dilution of precision in dm
gps_status |= prep_number(roundf(_ahrs.get_gps().get_hdop() * 0.1f),2,1)<<GPS_HDOP_OFFSET;
// GPS receiver advanced status (0: no advanced fix, 1: GPS_OK_FIX_3D_DGPS, 2: GPS_OK_FIX_3D_RTK_FLOAT, 3: GPS_OK_FIX_3D_RTK_FIXED)
gps_status |= ((_ahrs.get_gps().status() > GPS_STATUS_LIMIT) ? _ahrs.get_gps().status()-GPS_STATUS_LIMIT : 0)<<GPS_ADVSTATUS_OFFSET;
// Altitude MSL in dm
const Location &loc = _ahrs.get_gps().location();
gps_status |= prep_number(roundf(loc.alt * 0.1f),2,2)<<GPS_ALTMSL_OFFSET;
return gps_status;
}
/*
* prepare battery data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_batt(uint8_t instance)
{
uint32_t batt;
// battery voltage in decivolts, can have up to a 12S battery (4.25Vx12S = 51.0V)
batt = (((uint16_t)roundf(_battery.voltage(instance) * 10.0f)) & BATT_VOLTAGE_LIMIT);
// battery current draw in deciamps
batt |= prep_number(roundf(_battery.current_amps(instance) * 10.0f), 2, 1)<<BATT_CURRENT_OFFSET;
// battery current drawn since power on in mAh (limit to 32767 (0x7FFF) since value is stored on 15 bits)
batt |= ((_battery.current_total_mah(instance) < BATT_TOTALMAH_LIMIT) ? ((uint16_t)roundf(_battery.current_total_mah(instance)) & BATT_TOTALMAH_LIMIT) : BATT_TOTALMAH_LIMIT)<<BATT_TOTALMAH_OFFSET;
return batt;
}
/*
* prepare various autopilot status data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_ap_status(void)
{
uint32_t ap_status;
// control/flight mode number (limit to 31 (0x1F) since the value is stored on 5 bits)
ap_status = (uint8_t)((_ap.control_mode+1) & AP_CONTROL_MODE_LIMIT);
// simple/super simple modes flags
ap_status |= (uint8_t)((*_ap.valuep) & AP_SSIMPLE_FLAGS)<<AP_SSIMPLE_OFFSET;
// is_flying flag
ap_status |= (uint8_t)(((*_ap.valuep) & AP_LANDCOMPLETE_FLAG) ^ AP_LANDCOMPLETE_FLAG);
// armed flag
ap_status |= (uint8_t)(AP_Notify::flags.armed)<<AP_ARMED_OFFSET;
// battery failsafe flag
ap_status |= (uint8_t)(AP_Notify::flags.failsafe_battery)<<AP_BATT_FS_OFFSET;
// bad ekf flag
ap_status |= (uint8_t)(AP_Notify::flags.ekf_bad)<<AP_EKF_FS_OFFSET;
return ap_status;
}
/*
* prepare home position related data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_home(void)
{
uint32_t home = 0;
Location loc;
float _relative_home_altitude = 0;
if (_ahrs.get_position(loc)) {
// check home_loc is valid
const Location &home_loc = _ahrs.get_home();
if (home_loc.lat != 0 || home_loc.lng != 0) {
// distance between vehicle and home_loc in meters
home = prep_number(roundf(get_distance(home_loc, loc)), 3, 2);
// angle from front of vehicle to the direction of home_loc in 3 degree increments (just in case, limit to 127 (0x7F) since the value is stored on 7 bits)
home |= (((uint8_t)roundf(get_bearing_cd(loc,home_loc) * 0.00333f)) & HOME_BEARING_LIMIT)<<HOME_BEARING_OFFSET;
}
// altitude between vehicle and home_loc
_relative_home_altitude = loc.alt;
if (!loc.flags.relative_alt) {
// loc.alt has home altitude added, remove it
_relative_home_altitude -= _ahrs.get_home().alt;
}
}
// altitude above home in decimeters
home |= prep_number(roundf(_relative_home_altitude * 0.1f), 3, 2)<<HOME_ALT_OFFSET;
return home;
}
/*
* prepare velocity and yaw data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_velandyaw(void)
{
uint32_t velandyaw;
Vector3f velNED {};
// if we can't get velocity then we use zero for vertical velocity
_ahrs.get_velocity_NED(velNED);
// vertical velocity in dm/s
velandyaw = prep_number(roundf(-velNED.z * 10), 2, 1);
// horizontal velocity in dm/s (use airspeed if available and enabled - even if not used - otherwise use groundspeed)
const AP_Airspeed *aspeed = _ahrs.get_airspeed();
if (aspeed && aspeed->enabled()) {
velandyaw |= prep_number(roundf(aspeed->get_airspeed() * 10), 2, 1)<<VELANDYAW_XYVEL_OFFSET;
} else { // otherwise send groundspeed estimate from ahrs
velandyaw |= prep_number(roundf(_ahrs.groundspeed() * 10), 2, 1)<<VELANDYAW_XYVEL_OFFSET;
}
// yaw from [0;36000] centidegrees to .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits)
velandyaw |= ((uint16_t)roundf(_ahrs.yaw_sensor * 0.05f) & VELANDYAW_YAW_LIMIT)<<VELANDYAW_YAW_OFFSET;
return velandyaw;
}
/*
* prepare attitude (roll, pitch) and range data
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint32_t AP_Frsky_Telem::calc_attiandrng(void)
{
uint32_t attiandrng;
// roll from [-18000;18000] centidegrees to unsigned .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits)
attiandrng = ((uint16_t)roundf((_ahrs.roll_sensor + 18000) * 0.05f) & ATTIANDRNG_ROLL_LIMIT);
// pitch from [-9000;9000] centidegrees to unsigned .2 degree increments [0;900] (just in case, limit to 1023 (0x3FF) since the value is stored on 10 bits)
attiandrng |= ((uint16_t)roundf((_ahrs.pitch_sensor + 9000) * 0.05f) & ATTIANDRNG_PITCH_LIMIT)<<ATTIANDRNG_PITCH_OFFSET;
// rangefinder measurement in cm
attiandrng |= prep_number(_rng.distance_cm_orient(ROTATION_PITCH_270), 3, 1)<<ATTIANDRNG_RNGFND_OFFSET;
return attiandrng;
}
/*
* prepare value for transmission through FrSky link
* for FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
*/
uint16_t AP_Frsky_Telem::prep_number(int32_t number, uint8_t digits, uint8_t power)
{
uint16_t res = 0;
uint32_t abs_number = abs(number);
if ((digits == 2) && (power == 1)) { // number encoded on 8 bits: 7 bits for digits + 1 for 10^power
if (abs_number < 100) {
res = abs_number<<1;
} else if (abs_number < 1270) {
res = ((uint8_t)roundf(abs_number * 0.1f)<<1)|0x1;
} else { // transmit max possible value (0x7F x 10^1 = 1270)
res = 0xFF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<8;
}
} else if ((digits == 2) && (power == 2)) { // number encoded on 9 bits: 7 bits for digits + 2 for 10^power
if (abs_number < 100) {
res = abs_number<<2;
} else if (abs_number < 1000) {
res = ((uint8_t)roundf(abs_number * 0.1f)<<2)|0x1;
} else if (abs_number < 10000) {
res = ((uint8_t)roundf(abs_number * 0.01f)<<2)|0x2;
} else if (abs_number < 127000) {
res = ((uint8_t)roundf(abs_number * 0.001f)<<2)|0x3;
} else { // transmit max possible value (0x7F x 10^3 = 127000)
res = 0x1FF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<9;
}
} else if ((digits == 3) && (power == 1)) { // number encoded on 11 bits: 10 bits for digits + 1 for 10^power
if (abs_number < 1000) {
res = abs_number<<1;
} else if (abs_number < 10240) {
res = ((uint16_t)roundf(abs_number * 0.1f)<<1)|0x1;
} else { // transmit max possible value (0x3FF x 10^1 = 10240)
res = 0x7FF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<11;
}
} else if ((digits == 3) && (power == 2)) { // number encoded on 12 bits: 10 bits for digits + 2 for 10^power
if (abs_number < 1000) {
res = abs_number<<2;
} else if (abs_number < 10000) {
res = ((uint16_t)roundf(abs_number * 0.1f)<<2)|0x1;
} else if (abs_number < 100000) {
res = ((uint16_t)roundf(abs_number * 0.01f)<<2)|0x2;
} else if (abs_number < 1024000) {
res = ((uint16_t)roundf(abs_number * 0.001f)<<2)|0x3;
} else { // transmit max possible value (0x3FF x 10^3 = 127000)
res = 0xFFF;
}
if (number < 0) { // if number is negative, add sign bit in front
res |= 0x1<<12;
}
}
return res;
}
/*
* prepare altitude between vehicle and home location data
* for FrSky D and SPort protocols
*/
void AP_Frsky_Telem::calc_nav_alt(void)
{
Location loc;
float current_height = 0; // in centimeters above home
if (_ahrs.get_position(loc)) {
current_height = loc.alt*0.01f;
if (!loc.flags.relative_alt) {
// loc.alt has home altitude added, remove it
current_height -= _ahrs.get_home().alt*0.01f;
}
}
_gps.alt_nav_meters = (int16_t)current_height;
_gps.alt_nav_cm = (current_height - _gps.alt_nav_meters) * 100;
}
/*
* format the decimal latitude/longitude to the required degrees/minutes
* for FrSky D and SPort protocols
*/
float AP_Frsky_Telem::format_gps(float dec)
{
uint8_t dm_deg = (uint8_t) dec;
return (dm_deg * 100.0f) + (dec - dm_deg) * 60;
}
/*
* prepare gps data
* for FrSky D and SPort protocols
*/
void AP_Frsky_Telem::calc_gps_position(void)
{
float lat;
float lon;
float alt;
float speed;
if (_ahrs.get_gps().status() >= 3) {
const Location &loc = _ahrs.get_gps().location(); //get gps instance 0
lat = format_gps(fabsf(loc.lat/10000000.0f));
_gps.latdddmm = lat;
_gps.latmmmm = (lat - _gps.latdddmm) * 10000;
_gps.lat_ns = (loc.lat < 0) ? 'S' : 'N';
lon = format_gps(fabsf(loc.lng/10000000.0f));
_gps.londddmm = lon;
_gps.lonmmmm = (lon - _gps.londddmm) * 10000;
_gps.lon_ew = (loc.lng < 0) ? 'W' : 'E';
alt = loc.alt * 0.01f;
_gps.alt_gps_meters = (int16_t)alt;
_gps.alt_gps_cm = (alt - _gps.alt_gps_meters) * 100;
speed = _ahrs.get_gps().ground_speed();
_gps.speed_in_meter = speed;
_gps.speed_in_centimeter = (speed - _gps.speed_in_meter) * 100;
} else {
_gps.latdddmm = 0;
_gps.latmmmm = 0;
_gps.lat_ns = 0;
_gps.londddmm = 0;
_gps.lonmmmm = 0;
_gps.alt_gps_meters = 0;
_gps.alt_gps_cm = 0;
_gps.speed_in_meter = 0;
_gps.speed_in_centimeter = 0;
}
}