mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
416 lines
12 KiB
C++
416 lines
12 KiB
C++
/*
|
|
Please contribute your ideas! See https://dev.ardupilot.org for details
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_FlashStorage/AP_FlashStorage.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <stdio.h>
|
|
|
|
#define FLASHSTORAGE_DEBUG 0
|
|
|
|
#if FLASHSTORAGE_DEBUG
|
|
#define debug(fmt, args...) do { printf(fmt, ##args); } while(0)
|
|
#else
|
|
#define debug(fmt, args...) do { } while(0)
|
|
#endif
|
|
|
|
// constructor.
|
|
AP_FlashStorage::AP_FlashStorage(uint8_t *_mem_buffer,
|
|
uint32_t _flash_sector_size,
|
|
FlashWrite _flash_write,
|
|
FlashRead _flash_read,
|
|
FlashErase _flash_erase,
|
|
FlashEraseOK _flash_erase_ok) :
|
|
mem_buffer(_mem_buffer),
|
|
flash_sector_size(_flash_sector_size),
|
|
flash_write(_flash_write),
|
|
flash_read(_flash_read),
|
|
flash_erase(_flash_erase),
|
|
flash_erase_ok(_flash_erase_ok) {}
|
|
|
|
// initialise storage
|
|
bool AP_FlashStorage::init(void)
|
|
{
|
|
debug("running init()\n");
|
|
|
|
// start with empty memory buffer
|
|
memset(mem_buffer, 0, storage_size);
|
|
|
|
// find state of sectors
|
|
struct sector_header header[2];
|
|
|
|
// read headers and possibly initialise if bad signature
|
|
for (uint8_t i=0; i<2; i++) {
|
|
if (!flash_read(i, 0, (uint8_t *)&header[i], sizeof(header[i]))) {
|
|
return false;
|
|
}
|
|
bool bad_header = (header[i].signature != signature);
|
|
enum SectorState state = (enum SectorState)header[i].state;
|
|
if (state != SECTOR_STATE_AVAILABLE &&
|
|
state != SECTOR_STATE_IN_USE &&
|
|
state != SECTOR_STATE_FULL) {
|
|
bad_header = true;
|
|
}
|
|
|
|
// initialise if bad header
|
|
if (bad_header) {
|
|
return erase_all();
|
|
}
|
|
}
|
|
|
|
// work out the first sector to read from using sector states
|
|
enum SectorState states[2] {(enum SectorState)header[0].state, (enum SectorState)header[1].state};
|
|
uint8_t first_sector;
|
|
|
|
if (states[0] == states[1]) {
|
|
if (states[0] != SECTOR_STATE_AVAILABLE) {
|
|
return erase_all();
|
|
}
|
|
first_sector = 0;
|
|
} else if (states[0] == SECTOR_STATE_FULL) {
|
|
first_sector = 0;
|
|
} else if (states[1] == SECTOR_STATE_FULL) {
|
|
first_sector = 1;
|
|
} else if (states[0] == SECTOR_STATE_IN_USE) {
|
|
first_sector = 0;
|
|
} else if (states[1] == SECTOR_STATE_IN_USE) {
|
|
first_sector = 1;
|
|
} else {
|
|
// doesn't matter which is first
|
|
first_sector = 0;
|
|
}
|
|
|
|
// load data from any current sectors
|
|
for (uint8_t i=0; i<2; i++) {
|
|
uint8_t sector = (first_sector + i) & 1;
|
|
if (states[sector] == SECTOR_STATE_IN_USE ||
|
|
states[sector] == SECTOR_STATE_FULL) {
|
|
if (!load_sector(sector)) {
|
|
return erase_all();
|
|
}
|
|
}
|
|
}
|
|
|
|
// clear any write error
|
|
write_error = false;
|
|
reserved_space = 0;
|
|
|
|
// if the first sector is full then write out all data so we can erase it
|
|
if (states[first_sector] == SECTOR_STATE_FULL) {
|
|
current_sector = first_sector ^ 1;
|
|
if (!write_all()) {
|
|
return erase_all();
|
|
}
|
|
}
|
|
|
|
// erase any sectors marked full
|
|
for (uint8_t i=0; i<2; i++) {
|
|
if (states[i] == SECTOR_STATE_FULL) {
|
|
if (!erase_sector(i, true)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
reserved_space = 0;
|
|
|
|
// ready to use
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// switch full sector - should only be called when safe to have CPU
|
|
// offline for considerable periods as an erase will be needed
|
|
bool AP_FlashStorage::switch_full_sector(void)
|
|
{
|
|
debug("running switch_full_sector()\n");
|
|
|
|
// clear any write error
|
|
write_error = false;
|
|
reserved_space = 0;
|
|
|
|
if (!write_all()) {
|
|
return false;
|
|
}
|
|
|
|
if (!erase_sector(current_sector ^ 1, true)) {
|
|
return false;
|
|
}
|
|
|
|
return switch_sectors();
|
|
}
|
|
|
|
// write some data to virtual EEPROM
|
|
bool AP_FlashStorage::write(uint16_t offset, uint16_t length)
|
|
{
|
|
if (write_error) {
|
|
return false;
|
|
}
|
|
//debug("write at %u for %u write_offset=%u\n", offset, length, write_offset);
|
|
|
|
while (length > 0) {
|
|
uint8_t n = max_write;
|
|
if (length < n) {
|
|
n = length;
|
|
}
|
|
|
|
if (write_offset > flash_sector_size - (sizeof(struct block_header) + max_write + reserved_space)) {
|
|
if (!switch_sectors()) {
|
|
if (!flash_erase_ok()) {
|
|
return false;
|
|
}
|
|
if (!switch_full_sector()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct block_header header;
|
|
header.state = BLOCK_STATE_WRITING;
|
|
header.block_num = offset / block_size;
|
|
header.num_blocks_minus_one = ((n + (block_size - 1)) / block_size)-1;
|
|
uint16_t block_ofs = header.block_num*block_size;
|
|
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
|
|
|
|
#if AP_FLASHSTORAGE_MULTI_WRITE
|
|
if (!flash_write(current_sector, write_offset, (uint8_t*)&header, sizeof(header))) {
|
|
return false;
|
|
}
|
|
#endif
|
|
if (!flash_write(current_sector, write_offset+sizeof(header), &mem_buffer[block_ofs], block_nbytes)) {
|
|
return false;
|
|
}
|
|
header.state = BLOCK_STATE_VALID;
|
|
if (!flash_write(current_sector, write_offset, (uint8_t*)&header, sizeof(header))) {
|
|
return false;
|
|
}
|
|
write_offset += sizeof(header) + block_nbytes;
|
|
|
|
uint8_t n2 = block_nbytes - (offset % block_size);
|
|
//debug("write_block at %u for %u n2=%u\n", block_ofs, block_nbytes, n2);
|
|
if (n2 > length) {
|
|
break;
|
|
}
|
|
offset += n2;
|
|
length -= n2;
|
|
}
|
|
|
|
// handle wrap to next sector
|
|
// write data
|
|
// write header word
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
load all data from a flash sector into mem_buffer
|
|
*/
|
|
bool AP_FlashStorage::load_sector(uint8_t sector)
|
|
{
|
|
uint32_t ofs = sizeof(sector_header);
|
|
while (ofs < flash_sector_size - sizeof(struct block_header)) {
|
|
struct block_header header;
|
|
if (!flash_read(sector, ofs, (uint8_t *)&header, sizeof(header))) {
|
|
return false;
|
|
}
|
|
enum BlockState state = (enum BlockState)header.state;
|
|
|
|
switch (state) {
|
|
case BLOCK_STATE_AVAILABLE:
|
|
// we've reached the end
|
|
write_offset = ofs;
|
|
return true;
|
|
|
|
case BLOCK_STATE_WRITING: {
|
|
/*
|
|
we were interrupted while writing a block. We can't
|
|
re-use the data in this block as it may have some bits
|
|
that are not set to 1, so by flash rules can't be set to
|
|
an arbitrary value. So we skip over this block, leaving
|
|
a gap. The gap size is limited to (7+1)*8=64 bytes. That
|
|
gap won't be recovered until we next do an erase of this
|
|
sector
|
|
*/
|
|
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
|
|
ofs += block_nbytes + sizeof(header);
|
|
break;
|
|
}
|
|
|
|
case BLOCK_STATE_VALID: {
|
|
uint16_t block_nbytes = (header.num_blocks_minus_one+1)*block_size;
|
|
uint16_t block_ofs = header.block_num*block_size;
|
|
if (block_ofs + block_nbytes > storage_size) {
|
|
// the data is invalid (out of range)
|
|
return false;
|
|
}
|
|
if (!flash_read(sector, ofs+sizeof(header), &mem_buffer[block_ofs], block_nbytes)) {
|
|
return false;
|
|
}
|
|
//debug("read at %u for %u\n", block_ofs, block_nbytes);
|
|
ofs += block_nbytes + sizeof(header);
|
|
break;
|
|
}
|
|
default:
|
|
// invalid state
|
|
return false;
|
|
}
|
|
}
|
|
write_offset = ofs;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
erase one sector
|
|
*/
|
|
bool AP_FlashStorage::erase_sector(uint8_t sector, bool mark_available)
|
|
{
|
|
if (!flash_erase(sector)) {
|
|
return false;
|
|
}
|
|
if (!mark_available) {
|
|
return true;
|
|
}
|
|
struct sector_header header;
|
|
header.signature = signature;
|
|
header.state = SECTOR_STATE_AVAILABLE;
|
|
return flash_write(sector, 0, (const uint8_t *)&header, sizeof(header));
|
|
}
|
|
|
|
/*
|
|
erase both sectors
|
|
*/
|
|
bool AP_FlashStorage::erase_all(void)
|
|
{
|
|
write_error = false;
|
|
|
|
current_sector = 0;
|
|
write_offset = sizeof(struct sector_header);
|
|
|
|
if (!erase_sector(0, current_sector!=0)) {
|
|
return false;
|
|
}
|
|
if (!erase_sector(1, current_sector!=1)) {
|
|
return false;
|
|
}
|
|
|
|
// mark current sector as in-use
|
|
struct sector_header header;
|
|
header.signature = signature;
|
|
header.state = SECTOR_STATE_IN_USE;
|
|
return flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header));
|
|
}
|
|
|
|
/*
|
|
write all of mem_buffer to current sector
|
|
*/
|
|
bool AP_FlashStorage::write_all()
|
|
{
|
|
debug("write_all to sector %u at %u with reserved_space=%u\n",
|
|
current_sector, write_offset, reserved_space);
|
|
for (uint16_t ofs=0; ofs<storage_size; ofs += max_write) {
|
|
// local variable needed to overcome problem with MIN() macro and -O0
|
|
const uint8_t max_write_local = max_write;
|
|
uint8_t n = MIN(max_write_local, storage_size-ofs);
|
|
if (!all_zero(ofs, n)) {
|
|
if (!write(ofs, n)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// return true if all bytes are zero
|
|
bool AP_FlashStorage::all_zero(uint16_t ofs, uint16_t size)
|
|
{
|
|
while (size--) {
|
|
if (mem_buffer[ofs++] != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// switch to next sector for writing
|
|
bool AP_FlashStorage::switch_sectors(void)
|
|
{
|
|
if (reserved_space != 0) {
|
|
// other sector is already full
|
|
debug("both sectors are full\n");
|
|
return false;
|
|
}
|
|
|
|
struct sector_header header;
|
|
header.signature = signature;
|
|
|
|
uint8_t new_sector = current_sector ^ 1;
|
|
debug("switching to sector %u\n", new_sector);
|
|
|
|
// check sector is available
|
|
if (!flash_read(new_sector, 0, (uint8_t *)&header, sizeof(header))) {
|
|
return false;
|
|
}
|
|
if (header.signature != signature) {
|
|
write_error = true;
|
|
return false;
|
|
}
|
|
if (SECTOR_STATE_AVAILABLE != (enum SectorState)header.state) {
|
|
write_error = true;
|
|
debug("both sectors full\n");
|
|
return false;
|
|
}
|
|
|
|
// mark current sector as full. This needs to be done before we
|
|
// mark the new sector as in-use so that a power failure between
|
|
// the two steps doesn't leave us with an erase on the
|
|
// reboot. Thanks to night-ghost for spotting this.
|
|
header.state = SECTOR_STATE_FULL;
|
|
if (!flash_write(current_sector, 0, (const uint8_t *)&header, sizeof(header))) {
|
|
return false;
|
|
}
|
|
|
|
// mark new sector as in-use
|
|
header.state = SECTOR_STATE_IN_USE;
|
|
if (!flash_write(new_sector, 0, (const uint8_t *)&header, sizeof(header))) {
|
|
return false;
|
|
}
|
|
|
|
// switch sectors
|
|
current_sector = new_sector;
|
|
|
|
// we need to reserve some space in next sector to ensure we can successfully do a
|
|
// full write out on init()
|
|
reserved_space = reserve_size;
|
|
|
|
write_offset = sizeof(header);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
re-initialise, using current mem_buffer
|
|
*/
|
|
bool AP_FlashStorage::re_initialise(void)
|
|
{
|
|
if (!flash_erase_ok()) {
|
|
return false;
|
|
}
|
|
if (!erase_all()) {
|
|
return false;
|
|
}
|
|
return write_all();
|
|
}
|