ardupilot/Tools/autotest/pysim/multicopter.py
2013-05-03 14:52:16 +09:00

181 lines
6.2 KiB
Python
Executable File

#!/usr/bin/env python
from aircraft import Aircraft
import util, time, math
from math import degrees, radians
from rotmat import Vector3, Matrix3
class Motor(object):
def __init__(self, angle, clockwise, servo):
self.angle = angle # angle in degrees from front
self.clockwise = clockwise # clockwise == true, anti-clockwise == false
self.servo = servo # what servo output drives this motor
def build_motors(frame):
'''build a motors list given a frame type'''
frame = frame.lower()
if frame in [ 'quad', '+', 'x' ]:
motors = [
Motor(90, False, 1),
Motor(270, False, 2),
Motor(0, True, 3),
Motor(180, True, 4),
]
if frame in [ 'x', 'quadx' ]:
for i in range(4):
motors[i].angle -= 45.0
elif frame in ["y6"]:
motors = [
Motor(60, False, 1),
Motor(60, True, 7),
Motor(180, True, 4),
Motor(180, False, 8),
Motor(-60, True, 2),
Motor(-60, False, 3),
]
elif frame in ["hexa", "hexa+"]:
motors = [
Motor(0, True, 1),
Motor(60, False, 4),
Motor(120, True, 8),
Motor(180, False, 2),
Motor(240, True, 3),
Motor(300, False, 7),
]
elif frame in ["hexax"]:
motors = [
Motor(30, False, 7),
Motor(90, True, 1),
Motor(150, False, 4),
Motor(210, True, 8),
Motor(270, False, 2),
Motor(330, True, 3),
]
elif frame in ["octa", "octa+", "octax" ]:
motors = [
Motor(0, True, 1),
Motor(180, True, 2),
Motor(45, False, 3),
Motor(135, False, 4),
Motor(-45, False, 7),
Motor(-135, False, 8),
Motor(270, True, 10),
Motor(90, True, 11),
]
if frame == 'octax':
for i in range(8):
motors[i].angle += 22.5
else:
raise RuntimeError("Unknown multicopter frame type '%s'" % frame)
return motors
class MultiCopter(Aircraft):
'''a MultiCopter'''
def __init__(self, frame='+',
hover_throttle=0.45,
terminal_velocity=15.0,
frame_height=0.1,
mass=1.5):
Aircraft.__init__(self)
self.motors = build_motors(frame)
self.motor_speed = [ 0.0 ] * len(self.motors)
self.mass = mass # Kg
self.hover_throttle = hover_throttle
self.terminal_velocity = terminal_velocity
self.terminal_rotation_rate = 4*radians(360.0)
self.frame_height = frame_height
# scaling from total motor power to Newtons. Allows the copter
# to hover against gravity when each motor is at hover_throttle
self.thrust_scale = (self.mass * self.gravity) / (len(self.motors) * self.hover_throttle)
self.last_time = time.time()
def update(self, servos):
for i in range(0, len(self.motors)):
servo = servos[self.motors[i].servo-1]
if servo <= 0.0:
self.motor_speed[i] = 0
else:
self.motor_speed[i] = servo
m = self.motor_speed
# how much time has passed?
t = time.time()
delta_time = t - self.last_time
self.last_time = t
# rotational acceleration, in rad/s/s, in body frame
rot_accel = Vector3(0,0,0)
thrust = 0.0
for i in range(len(self.motors)):
rot_accel.x += -radians(5000.0) * math.sin(radians(self.motors[i].angle)) * m[i]
rot_accel.y += radians(5000.0) * math.cos(radians(self.motors[i].angle)) * m[i]
if self.motors[i].clockwise:
rot_accel.z -= m[i] * radians(400.0)
else:
rot_accel.z += m[i] * radians(400.0)
thrust += m[i] * self.thrust_scale # newtons
# rotational air resistance
rot_accel.x -= self.gyro.x * radians(5000.0) / self.terminal_rotation_rate
rot_accel.y -= self.gyro.y * radians(5000.0) / self.terminal_rotation_rate
rot_accel.z -= self.gyro.z * radians(400.0) / self.terminal_rotation_rate
# update rotational rates in body frame
self.gyro += rot_accel * delta_time
# update attitude
self.dcm.rotate(self.gyro * delta_time)
self.dcm.normalize()
# air resistance
air_resistance = - self.velocity * (self.gravity/self.terminal_velocity)
accel_body = Vector3(0, 0, -thrust / self.mass)
accel_earth = self.dcm * accel_body
accel_earth += Vector3(0, 0, self.gravity)
accel_earth += air_resistance
# add in some wind (turn force into accel by dividing by mass).
# NOTE: disable this drag correction until we work out
# why it is blowing up
# accel_earth += self.wind.drag(self.velocity) / self.mass
# if we're on the ground, then our vertical acceleration is limited
# to zero. This effectively adds the force of the ground on the aircraft
if self.on_ground() and accel_earth.z > 0:
accel_earth.z = 0
# work out acceleration as seen by the accelerometers. It sees the kinematic
# acceleration (ie. real movement), plus gravity
self.accel_body = self.dcm.transposed() * (accel_earth + Vector3(0, 0, -self.gravity))
# new velocity vector
self.velocity += accel_earth * delta_time
# new position vector
old_position = self.position.copy()
self.position += self.velocity * delta_time
# constrain height to the ground
if self.on_ground():
if not self.on_ground(old_position):
print("Hit ground at %f m/s" % (self.velocity.z))
self.velocity = Vector3(0, 0, 0)
# zero roll/pitch, but keep yaw
(r, p, y) = self.dcm.to_euler()
self.dcm.from_euler(0, 0, y)
self.position = Vector3(self.position.x, self.position.y,
-(self.ground_level + self.frame_height - self.home_altitude))
# update lat/lon/altitude
self.update_position(delta_time)