ardupilot/libraries/AP_ICEngine/AP_ICEngine.h
2016-07-25 10:06:03 +10:00

101 lines
2.7 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
control of internal combustion engines (starter, ignition and choke)
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_RPM/AP_RPM.h>
#include <AP_AHRS/AP_AHRS.h>
class AP_ICEngine {
public:
// constructor
AP_ICEngine(const AP_RPM &_rpm, const AP_AHRS &_ahrs);
static const struct AP_Param::GroupInfo var_info[];
// update engine state. Should be called at 10Hz or more
void update(void);
// check for throttle override
bool throttle_override(uint8_t &percent);
enum ICE_State {
ICE_OFF=0,
ICE_START_HEIGHT_DELAY=1,
ICE_START_DELAY=2,
ICE_STARTING=3,
ICE_RUNNING=4
};
// get current engine control state
ICE_State get_state(void) const { return state; }
// handle DO_ENGINE_CONTROL messages via MAVLink or mission
bool engine_control(float start_control, float cold_start, float height_delay);
private:
const AP_RPM &rpm;
const AP_AHRS &ahrs;
enum ICE_State state;
// enable library
AP_Int8 enable;
// channel for pilot to command engine start, 0 for none
AP_Int8 start_chan;
// which RPM instance to use
AP_Int8 rpm_instance;
// time to run starter for (seconds)
AP_Float starter_time;
// delay between start attempts (seconds)
AP_Float starter_delay;
// pwm values
AP_Int16 pwm_ignition_on;
AP_Int16 pwm_ignition_off;
AP_Int16 pwm_starter_on;
AP_Int16 pwm_starter_off;
// RPM above which engine is considered to be running
AP_Int32 rpm_threshold;
// time when we started the starter
uint32_t starter_start_time_ms;
// time when we last ran the starter
uint32_t starter_last_run_ms;
// throttle percentage for engine start
AP_Int8 start_percent;
// height when we enter ICE_START_HEIGHT_DELAY
float initial_height;
// height change required to start engine
float height_required;
// we are waiting for valid height data
bool height_pending:1;
};