mirror of https://github.com/ArduPilot/ardupilot
880 lines
27 KiB
Plaintext
880 lines
27 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
/*
|
|
ArduPilotMega (unstable development version)
|
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short
|
|
Thanks to: Chris Anderson, HappyKillMore, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi
|
|
Please contribute your ideas!
|
|
|
|
|
|
This firmware is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Header includes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// AVR runtime
|
|
#include <avr/io.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <math.h>
|
|
|
|
// Libraries
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
#include <APM_BinComm.h>
|
|
#include <APM_RC.h> // ArduPilot Mega RC Library
|
|
#include <AP_GPS.h> // ArduPilot GPS library
|
|
#include <Wire.h>
|
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
|
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
|
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library
|
|
#include <AP_DCM.h> // ArduPilot Mega DCM Library
|
|
#include <PID.h> // PID library
|
|
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
|
|
|
// Configuration
|
|
#include "config.h"
|
|
|
|
// Local modules
|
|
#include "defines.h"
|
|
#include "global_data.h"
|
|
#include "GCS.h"
|
|
#include "HIL.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Serial ports
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Note that FastSerial port buffers are allocated at ::begin time,
|
|
// so there is not much of a penalty to defining ports that we don't
|
|
// use.
|
|
//
|
|
FastSerialPort0(Serial); // FTDI/console
|
|
FastSerialPort1(Serial1); // GPS port
|
|
FastSerialPort3(Serial3); // Telemetry port
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// There are three basic options related to flight sensor selection.
|
|
//
|
|
// - Normal flight mode. Real sensors are used.
|
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
|
// protocol supplies attitude information directly.
|
|
// - HIL Sensors mode. Synthetic sensors are configured that
|
|
// supply data from the simulation.
|
|
//
|
|
|
|
#if HIL_MODE == HIL_MODE_NONE
|
|
|
|
// real sensors
|
|
AP_ADC_ADS7844 adc;
|
|
APM_BMP085_Class pitot; //TODO: 'pitot' is not an appropriate name for a static pressure sensor
|
|
AP_Compass_HMC5843 compass;
|
|
|
|
// real GPS selection
|
|
#if GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
|
AP_GPS_NMEA gps(&Serial1);
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
|
AP_GPS_SIRF gps(&Serial1);
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
|
AP_GPS_UBLOX gps(&Serial1);
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
|
AP_GPS_MTK gps(&Serial1);
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
|
|
AP_GPS_MTK19 gps(&Serial1);
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
|
AP_GPS_NONE gps(NULL);
|
|
#else
|
|
#error Unrecognised GPS_PROTOCOL setting.
|
|
#endif // GPS PROTOCOL
|
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS
|
|
// sensor emulators
|
|
AP_ADC_HIL adc;
|
|
APM_BMP085_HIL_Class pitot;
|
|
AP_Compass_HIL compass;
|
|
AP_GPS_HIL gps(NULL);
|
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
|
AP_DCM_HIL dcm;
|
|
AP_GPS_HIL gps(NULL);
|
|
|
|
#else
|
|
#error Unrecognised HIL_MODE setting.
|
|
#endif // HIL MODE
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
|
|
HIL_MAVLINK hil;
|
|
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE
|
|
HIL_XPLANE hil;
|
|
#endif // HIL PROTOCOL
|
|
|
|
#endif
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
AP_IMU imu(&adc,getAddress(PARAM_IMU_OFFSET_0));
|
|
AP_DCM dcm(&imu, &gps, &compass);
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GCS selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_STANDARD
|
|
// create an instance of the standard GCS.
|
|
BinComm::MessageHandler GCS_MessageHandlers[] = {
|
|
{BinComm::MSG_ANY, receive_message, NULL},
|
|
{BinComm::MSG_NULL, NULL, NULL}
|
|
};
|
|
GCS_STANDARD gcs(GCS_MessageHandlers);
|
|
|
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_LEGACY
|
|
GCS_LEGACY gcs;
|
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_DEBUGTERMINAL
|
|
GCS_DEBUGTERMINAL gcs;
|
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_XPLANE
|
|
GCS_XPLANE gcs; // Should become a HIL
|
|
#elif GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
GCS_MAVLINK gcs;
|
|
#else
|
|
// If we are not using a GCS, we need a stub that does nothing.
|
|
GCS_Class gcs;
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
byte control_mode = MANUAL;
|
|
boolean failsafe = false; // did our throttle dip below the failsafe value?
|
|
boolean ch3_failsafe = false;
|
|
byte crash_timer;
|
|
byte oldSwitchPosition; // for remembering the control mode switch
|
|
boolean reverse_switch = 1; // do we read the reversing switches after startup?
|
|
|
|
byte ground_start_count = 6; // have we achieved first lock and set Home?
|
|
int ground_start_avg; // 5 samples to avg speed for ground start
|
|
boolean ground_start = false; // have we started on the ground?
|
|
const char *comma = ",";
|
|
|
|
const char* flight_mode_strings[] = {
|
|
"Manual",
|
|
"Circle",
|
|
"Stabilize",
|
|
"",
|
|
"",
|
|
"FBW_A",
|
|
"FBW_B",
|
|
"",
|
|
"",
|
|
"",
|
|
"Auto",
|
|
"RTL",
|
|
"Loiter",
|
|
"Takeoff",
|
|
"Land"};
|
|
|
|
|
|
/* Radio values
|
|
Channel assignments
|
|
1 Ailerons (rudder if no ailerons)
|
|
2 Elevator
|
|
3 Throttle
|
|
4 Rudder (if we have ailerons)
|
|
5 Mode
|
|
6 TBD
|
|
7 TBD
|
|
8 TBD
|
|
*/
|
|
|
|
uint16_t radio_in[8]; // current values from the transmitter - microseconds
|
|
uint16_t radio_out[8]; // Send to the PWM library
|
|
int16_t servo_out[8]; // current values to the servos - degrees * 100 (approx assuming servo is -45 to 45 degrees except [3] is 0 to 100
|
|
|
|
uint16_t elevon1_trim = 1500; // TODO: handle in EEProm
|
|
uint16_t elevon2_trim = 1500;
|
|
uint16_t ch1_temp = 1500; // Used for elevon mixing
|
|
uint16_t ch2_temp = 1500;
|
|
|
|
int reverse_roll = 1;
|
|
int reverse_pitch = 1;
|
|
int reverse_rudder = 1;
|
|
byte mix_mode = 0; // 0 = normal , 1 = elevons
|
|
int reverse_elevons = 1;
|
|
int reverse_ch1_elevon = 1;
|
|
int reverse_ch2_elevon = 1;
|
|
|
|
// for elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon
|
|
|
|
|
|
float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1?
|
|
|
|
// PID controllers
|
|
PID pidServoRoll(getAddress(PARAM_RLL2SRV_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidServoPitch(getAddress(PARAM_PTCH2SRV_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidServoRudder(getAddress(PARAM_YW2SRV_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidNavRoll(getAddress(PARAM_HDNG2RLL_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidNavPitchAirspeed(getAddress(PARAM_ARSPD2PTCH_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidNavPitchAltitude(getAddress(PARAM_ALT2PTCH_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidTeThrottle(getAddress(PARAM_ENRGY2THR_P),PID::STORE_EEPROM_FLOAT);
|
|
PID pidAltitudeThrottle(getAddress(PARAM_ALT2THR_P),PID::STORE_EEPROM_FLOAT);
|
|
|
|
PID *pid_index[] = {
|
|
&pidServoRoll,
|
|
&pidServoPitch,
|
|
&pidServoRudder,
|
|
&pidNavRoll,
|
|
&pidNavPitchAirspeed,
|
|
&pidNavPitchAltitude,
|
|
&pidTeThrottle,
|
|
&pidAltitudeThrottle
|
|
};
|
|
|
|
// GPS variables
|
|
// -------------
|
|
const float t7 = 10000000.0; // used to scale values for EEPROM and flash memory storage
|
|
float scaleLongUp; // used to reverse longtitude scaling
|
|
float scaleLongDown; // used to reverse longtitude scaling
|
|
boolean GPS_light = false; // status of the GPS light
|
|
|
|
// Location & Navigation
|
|
// ---------------------
|
|
const float radius_of_earth = 6378100; // meters
|
|
const float gravity = 9.81; // meters/ sec^2
|
|
long hold_course = -1; // deg * 100 dir of plane
|
|
long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
|
|
long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
|
|
long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
|
|
int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
|
|
|
|
|
|
byte command_must_index; // current command memory location
|
|
byte command_may_index; // current command memory location
|
|
byte command_must_ID; // current command ID
|
|
byte command_may_ID; // current command ID
|
|
//byte EEPROM_command // 1 = from the list, 0 = generated
|
|
|
|
|
|
// Airspeed
|
|
// --------
|
|
int airspeed; // m/s * 100
|
|
int airspeed_nudge = 0; // m/s * 100 : additional airspeed based on throttle stick position in top 1/2 of range
|
|
float airspeed_error; // m/s * 100
|
|
long energy_error; // energy state error (kinetic + potential) for altitude hold
|
|
long airspeed_energy_error; // kinetic portion of energy error
|
|
|
|
// Location Errors
|
|
// ---------------
|
|
long bearing_error; // deg * 100 : 0 to 36000
|
|
long altitude_error; // meters * 100 we are off in altitude
|
|
float crosstrack_error; // meters we are off trackline
|
|
|
|
// Sensors
|
|
// --------
|
|
float airpressure_raw; // Airspeed Sensor - is a float to better handle filtering
|
|
int airpressure_offset; // analog air pressure sensor while still
|
|
int airpressure; // airspeed as a pressure value
|
|
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
|
|
float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
|
|
float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1+2, initialized above threshold for filter
|
|
float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1+2+3, initialized above threshold for filter
|
|
float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1+2+3+4, initialized above threshold for filter
|
|
|
|
// Pressure Sensor variables
|
|
unsigned long abs_press;
|
|
unsigned long abs_press_filt;
|
|
unsigned long abs_press_gnd;
|
|
int ground_temperature;
|
|
int temp_unfilt;
|
|
long ground_alt; // Ground altitude from gps at startup in centimeters
|
|
long press_alt; // Pressure altitude
|
|
|
|
// flight mode specific
|
|
// --------------------
|
|
boolean takeoff_complete = true; // Flag for using gps ground course instead of IMU yaw. Set false when takeoff command processes.
|
|
boolean land_complete = false;
|
|
int landing_pitch; // pitch for landing set by commands
|
|
int takeoff_pitch;
|
|
int takeoff_altitude;
|
|
int landing_distance; // meters;
|
|
|
|
// Loiter management
|
|
// -----------------
|
|
long old_target_bearing; // deg * 100
|
|
int loiter_total; // deg : how many times to loiter * 360
|
|
int loiter_delta; // deg : how far we just turned
|
|
int loiter_sum; // deg : how far we have turned around a waypoint
|
|
long loiter_time; // millis : when we started LOITER mode
|
|
int loiter_time_max; // millis : how long to stay in LOITER mode
|
|
|
|
// these are the values for navigation control functions
|
|
// ----------------------------------------------------
|
|
long nav_roll; // deg * 100 : target roll angle
|
|
long nav_pitch; // deg * 100 : target pitch angle
|
|
long altitude_estimate; // for smoothing GPS output
|
|
|
|
int throttle_nudge = 0; // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
|
|
|
|
// Waypoints
|
|
// ---------
|
|
long wp_distance; // meters - distance between plane and next waypoint
|
|
long wp_totalDistance; // meters - distance between old and next waypoint
|
|
byte next_wp_index; // Current active command index
|
|
|
|
// repeating event control
|
|
// -----------------------
|
|
byte event_id; // what to do - see defines
|
|
long event_timer; // when the event was asked for in ms
|
|
int event_delay; // how long to delay the next firing of event in millis
|
|
int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
|
|
int event_value; // per command value, such as PWM for servos
|
|
int event_undo_value; // the value used to undo commands
|
|
byte repeat_forever;
|
|
byte undo_event; // counter for timing the undo
|
|
|
|
// delay command
|
|
// --------------
|
|
int delay_timeout = 0; // used to delay commands
|
|
long delay_start = 0; // used to delay commands
|
|
|
|
// 3D Location vectors
|
|
// -------------------
|
|
struct Location home; // home location
|
|
struct Location prev_WP; // last waypoint
|
|
struct Location current_loc; // current location
|
|
struct Location next_WP; // next waypoint
|
|
struct Location tell_command; // command for telemetry
|
|
struct Location next_command; // command preloaded
|
|
long target_altitude; // used for
|
|
long offset_altitude; // used for
|
|
boolean home_is_set = false; // Flag for if we have gps lock and have set the home location
|
|
|
|
// patch antenna variables
|
|
struct Location trackVehicle_loc; // vehicle location to track with antenna
|
|
|
|
// IMU variables
|
|
// -------------
|
|
float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
|
|
|
|
float COGX; // Course overground X axis
|
|
float COGY = 1; // Course overground Y axis
|
|
|
|
// Performance monitoring
|
|
// ----------------------
|
|
long perf_mon_timer;
|
|
float imu_health; // Metric based on accel gain deweighting
|
|
int G_Dt_max; // Max main loop cycle time in milliseconds
|
|
byte gyro_sat_count;
|
|
byte adc_constraints;
|
|
byte renorm_sqrt_count;
|
|
byte renorm_blowup_count;
|
|
int gps_fix_count;
|
|
byte gcs_messages_sent;
|
|
|
|
|
|
// GCS
|
|
// ---
|
|
char GCS_buffer[53];
|
|
char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed
|
|
|
|
// System Timers
|
|
// --------------
|
|
unsigned long fast_loopTimer; // Time in miliseconds of main control loop
|
|
unsigned long fast_loopTimeStamp = 0; // Time Stamp when fast loop was complete
|
|
unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop
|
|
byte medium_loopCounter = 0; // Counters for branching from main control loop to slower loops
|
|
byte slow_loopCounter = 0;
|
|
byte superslow_loopCounter = 0;
|
|
unsigned long deltaMiliSeconds; // Delta Time in miliseconds
|
|
unsigned long dTnav; // Delta Time in milliseconds for navigation computations
|
|
int mainLoop_count;
|
|
unsigned long elapsedTime; // for doing custom events
|
|
unsigned long GPS_timer;
|
|
float load; // % MCU cycles used
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Top-level logic
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void setup() {
|
|
|
|
init_ardupilot();
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
// We want this to execute at 50Hz if possible
|
|
// -------------------------------------------
|
|
if (millis()-fast_loopTimer > 19) {
|
|
deltaMiliSeconds = millis() - fast_loopTimer;
|
|
load = float(fast_loopTimeStamp - fast_loopTimer)/deltaMiliSeconds;
|
|
G_Dt = (float)deltaMiliSeconds / 1000.f;
|
|
fast_loopTimer = millis();
|
|
|
|
mainLoop_count++;
|
|
|
|
// Execute the fast loop
|
|
// ---------------------
|
|
fast_loop();
|
|
|
|
// Execute the medium loop
|
|
// -----------------------
|
|
medium_loop();
|
|
|
|
if (millis()- perf_mon_timer > 20000) {
|
|
if (mainLoop_count != 0) {
|
|
gcs.send_message(MSG_PERF_REPORT);
|
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_PM)
|
|
Log_Write_Performance();
|
|
|
|
resetPerfData();
|
|
}
|
|
}
|
|
fast_loopTimeStamp = millis();
|
|
}
|
|
}
|
|
|
|
void fast_loop()
|
|
{
|
|
// This is the fast loop - we want it to execute at 50Hz if possible
|
|
// -----------------------------------------------------------------
|
|
if (deltaMiliSeconds > G_Dt_max)
|
|
G_Dt_max = deltaMiliSeconds;
|
|
|
|
// Read radio
|
|
// ----------
|
|
read_radio();
|
|
|
|
// check for throtle failsafe condition
|
|
// ------------------------------------
|
|
//if (get(PARAM_THR_FAILSAFE))
|
|
//set_failsafe(ch3_failsafe);
|
|
|
|
// Read Airspeed
|
|
// -------------
|
|
# if AIRSPEED_SENSOR == 1 && HIL_MODE != HIL_MODE_ATTITUDE
|
|
//read_airspeed();
|
|
# endif
|
|
|
|
//dcm.update_DCM(G_Dt);
|
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_ATTITUDE_FAST)
|
|
//Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor);
|
|
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_RAW)
|
|
//Log_Write_Raw();
|
|
#endif // HIL_MODE
|
|
|
|
// altitude smoothing
|
|
// ------------------
|
|
//if (control_mode != FLY_BY_WIRE_B)
|
|
//calc_altitude_error();
|
|
|
|
// inertial navigation
|
|
// ------------------
|
|
#if INERTIAL_NAVIGATION == ENABLED
|
|
// TODO: implement inertial nav function
|
|
//inertialNavigation();
|
|
#endif
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
//update_current_flight_mode();
|
|
|
|
// apply desired roll, pitch and yaw to the plane
|
|
// ----------------------------------------------
|
|
//if (control_mode > MANUAL)
|
|
//stabilize();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos_4();
|
|
|
|
|
|
// XXX is it appropriate to be doing the comms below on the fast loop?
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
// kick the HIL to process incoming sensor packets
|
|
hil.update();
|
|
// send out hil data
|
|
hil.send_message(MSG_SERVO_OUT);
|
|
//hil.send_message(MSG_ATTITUDE);
|
|
//hil.send_message(MSG_LOCATION);
|
|
//hil.send_message(MSG_AIRSPEED);
|
|
#endif
|
|
|
|
// kick the GCS to process uplink data
|
|
gcs.update();
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(45,1000);
|
|
#endif
|
|
// XXX this should be absorbed into the above,
|
|
// or be a "GCS fast loop" interface
|
|
}
|
|
|
|
void medium_loop()
|
|
{
|
|
// This is the start of the medium (10 Hz) loop pieces
|
|
// -----------------------------------------
|
|
switch(medium_loopCounter) {
|
|
|
|
// This case deals with the GPS
|
|
//-------------------------------
|
|
case 0:
|
|
medium_loopCounter++;
|
|
update_GPS();
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE && MAGNETOMETER == 1
|
|
//compass.read(); // Read magnetometer
|
|
//compass.calculate(dcm.roll,dcm.pitch); // Calculate heading
|
|
#endif
|
|
|
|
break;
|
|
|
|
// This case performs some navigation computations
|
|
//------------------------------------------------
|
|
case 1:
|
|
medium_loopCounter++;
|
|
|
|
|
|
if(gps.new_data){
|
|
dTnav = millis() - medium_loopTimer;
|
|
medium_loopTimer = millis();
|
|
}
|
|
|
|
// calculate the plane's desired bearing
|
|
// -------------------------------------
|
|
//navigate();
|
|
break;
|
|
|
|
// command processing
|
|
//------------------------------
|
|
case 2:
|
|
medium_loopCounter++;
|
|
|
|
// perform next command
|
|
// --------------------
|
|
//update_commands();
|
|
break;
|
|
|
|
// This case deals with sending high rate telemetry
|
|
//-------------------------------------------------
|
|
case 3:
|
|
medium_loopCounter++;
|
|
|
|
//if ((get(PARAM_LOG_BITMASK) & MASK_LOG_ATTITUDE_MED) && !(get(PARAM_LOG_BITMASK) & MASK_LOG_ATTITUDE_FAST))
|
|
//Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor);
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_CTUN)
|
|
//Log_Write_Control_Tuning();
|
|
#endif
|
|
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_NTUN)
|
|
//Log_Write_Nav_Tuning();
|
|
|
|
//if (get(PARAM_LOG_BITMASK) & MASK_LOG_GPS)
|
|
//Log_Write_GPS(gps.time, current_loc.lat, current_loc.lng, gps.altitude, current_loc.alt, (long) gps.ground_speed, gps.ground_course, gps.fix, gps.num_sats);
|
|
|
|
// XXX this should be a "GCS medium loop" interface
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(5,45);
|
|
// send all requested output streams with rates requested
|
|
// between 5 and 45 Hz
|
|
#else
|
|
//gcs.send_message(MSG_ATTITUDE); // Sends attitude data
|
|
#endif
|
|
break;
|
|
|
|
// This case controls the slow loop
|
|
//---------------------------------
|
|
case 4:
|
|
medium_loopCounter=0;
|
|
slow_loop();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void slow_loop()
|
|
{
|
|
// This is the slow (3 1/3 Hz) loop pieces
|
|
//----------------------------------------
|
|
switch (slow_loopCounter){
|
|
case 0:
|
|
slow_loopCounter++;
|
|
|
|
|
|
|
|
|
|
superslow_loopCounter++;
|
|
//if(superslow_loopCounter >=15) {
|
|
// keep track of what page is in use in the log
|
|
// *** We need to come up with a better scheme to handle this...
|
|
//eeprom_write_word((uint16_t *) EE_LAST_LOG_PAGE, DataFlash.GetWritePage());
|
|
//superslow_loopCounter = 0;
|
|
//}
|
|
break;
|
|
|
|
case 1:
|
|
slow_loopCounter++;
|
|
|
|
// Read 3-position switch on radio
|
|
// -------------------------------
|
|
read_control_switch();
|
|
|
|
// Read Control Surfaces/Mix switches
|
|
// ----------------------------------
|
|
if(reverse_switch){
|
|
update_servo_switches();
|
|
}
|
|
|
|
// Read main battery voltage if hooked up - does not read the 5v from radio
|
|
// ------------------------------------------------------------------------
|
|
#if BATTERY_EVENT == 1
|
|
read_battery();
|
|
#endif
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
// Read Baro pressure
|
|
// ------------------
|
|
//read_airpressure();
|
|
#endif
|
|
|
|
break;
|
|
|
|
case 2:
|
|
slow_loopCounter = 0;
|
|
//update_events();
|
|
|
|
// XXX this should be a "GCS slow loop" interface
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(1,5);
|
|
// send all requested output streams with rates requested
|
|
// between 1 and 5 Hz
|
|
#else
|
|
//gcs.send_message(MSG_LOCATION);
|
|
#endif
|
|
// send a heartbeat
|
|
gcs.send_message(MSG_HEARTBEAT); // XXX This is running at 3 1/3 Hz
|
|
//but should be at 1 Hz, new loop timer?
|
|
// display load
|
|
gcs.send_message(MSG_CPU_LOAD, load*100);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void update_GPS(void)
|
|
{
|
|
if(gps.status() == 0)
|
|
{
|
|
gps.init(); // reinitialize dead connections
|
|
return; // let it warm up while other stuff is running
|
|
}
|
|
gps.update();
|
|
update_GPS_light();
|
|
|
|
if (gps.new_data && gps.fix) {
|
|
GPS_timer = millis();
|
|
// XXX We should be sending GPS data off one of the regular loops so that we send
|
|
// no-GPS-fix data too
|
|
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK
|
|
gcs.send_message(MSG_LOCATION);
|
|
#endif
|
|
|
|
// for performance
|
|
// ---------------
|
|
gps_fix_count++;
|
|
|
|
if(ground_start_count > 1){
|
|
ground_start_count--;
|
|
ground_start_avg += gps.ground_speed;
|
|
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
SendDebugln("!! bad loc");
|
|
ground_start_count = 5;
|
|
|
|
} else {
|
|
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){
|
|
startup_ground();
|
|
|
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
|
|
init_home();
|
|
} else if (ENABLE_AIR_START == 0) {
|
|
init_home();
|
|
}
|
|
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
|
|
current_loc.lng = gps.longitude; // Lon * 10**7
|
|
current_loc.lat = gps.latitude; // Lat * 10**7
|
|
|
|
// XXX this is bogus; should just force get(PARAM_ALT_MIX) to zero for GPS_PROTOCOL_IMU
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE
|
|
current_loc.alt = gps.altitude;
|
|
#else
|
|
current_loc.alt = ((1 - get(PARAM_ALT_MIX)) * gps.altitude) + (get(PARAM_ALT_MIX) * press_alt); // alt_MSL centimeters (meters * 100)
|
|
#endif
|
|
|
|
// Calculate new climb rate
|
|
add_altitude_data(millis()/100, gps.altitude/10);
|
|
|
|
COGX = cosf(ToRad(gps.ground_course/100.0));
|
|
COGY = sinf(ToRad(gps.ground_course/100.0));
|
|
}
|
|
}
|
|
|
|
void update_current_flight_mode(void)
|
|
{
|
|
if(control_mode == AUTO){
|
|
crash_checker();
|
|
|
|
switch(command_must_ID){
|
|
case CMD_TAKEOFF:
|
|
if (hold_course > -1) {
|
|
calc_nav_roll();
|
|
} else {
|
|
nav_roll = 0;
|
|
}
|
|
|
|
#if AIRSPEED_SENSOR == ENABLED
|
|
calc_nav_pitch();
|
|
if (nav_pitch < (long)takeoff_pitch) nav_pitch = (long)takeoff_pitch;
|
|
#else
|
|
nav_pitch = (long)((float)gps.ground_speed / (float)get(PARAM_TRIM_AIRSPEED) * (float)takeoff_pitch * 0.5);
|
|
nav_pitch = constrain(nav_pitch, 500l, (long)takeoff_pitch);
|
|
#endif
|
|
|
|
|
|
servo_out[CH_THROTTLE] = get(PARAM_THR_MAX); //TODO: Replace with THROTTLE_TAKEOFF or other method of controlling throttle
|
|
// What is the case for doing something else? Why wouldn't you want max throttle for TO?
|
|
// ******************************
|
|
|
|
break;
|
|
|
|
case CMD_LAND:
|
|
calc_nav_roll();
|
|
|
|
#if AIRSPEED_SENSOR == ENABLED
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
#else
|
|
calc_nav_pitch(); // calculate nav_pitch just to use for calc_throttle
|
|
calc_throttle(); // throttle based on altitude error
|
|
nav_pitch = landing_pitch; // pitch held constant
|
|
#endif
|
|
|
|
if (land_complete) {
|
|
servo_out[CH_THROTTLE] = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
hold_course = -1;
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
}
|
|
}else{
|
|
switch(control_mode){
|
|
case RTL:
|
|
case LOITER:
|
|
hold_course = -1;
|
|
crash_checker();
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case FLY_BY_WIRE_A:
|
|
// fake Navigation output using sticks
|
|
nav_roll = ((radio_in[CH_ROLL] - radio_trim(CH_ROLL)) *
|
|
get(PARAM_LIM_ROLL) * reverse_roll) / 350;
|
|
nav_pitch = ((radio_in[CH_PITCH] - radio_trim(CH_PITCH)) *
|
|
3500l * reverse_pitch) / 350;
|
|
nav_roll = constrain(nav_roll, -get(PARAM_LIM_ROLL), get(PARAM_LIM_ROLL));
|
|
nav_pitch = constrain(nav_pitch, -3000, 3000); // trying to give more pitch authority
|
|
break;
|
|
|
|
case FLY_BY_WIRE_B:
|
|
// fake Navigation output using sticks
|
|
// We use get(PARAM_PITCH_MIN) because its magnitude is
|
|
// normally greater than get(PARAM_get(PARAM_PITCH_MAX))
|
|
nav_roll = ((radio_in[CH_ROLL] - radio_trim(CH_ROLL))
|
|
* get(PARAM_LIM_ROLL) * reverse_roll) / 350;
|
|
altitude_error = ((radio_in[CH_PITCH] - radio_trim(CH_PITCH))
|
|
* get(PARAM_LIM_PITCH_MIN) * -reverse_pitch) / 350;
|
|
nav_roll = constrain(nav_roll, -get(PARAM_LIM_ROLL), get(PARAM_LIM_ROLL));
|
|
|
|
#if AIRSPEED_SENSOR == ENABLED
|
|
airspeed_error = ((int)(get(PARAM_ARSPD_FBW_MAX) -
|
|
get(PARAM_ARSPD_FBW_MIN)) *
|
|
servo_out[CH_THROTTLE]) +
|
|
((int)get(PARAM_ARSPD_FBW_MIN) * 100);
|
|
// Intermediate calculation - airspeed_error is just desired airspeed at this point
|
|
airspeed_energy_error = (long)(((long)airspeed_error *
|
|
(long)airspeed_error) -
|
|
((long)airspeed * (long)airspeed))/20000;
|
|
//Changed 0.00005f * to / 20000 to avoid floating point calculation
|
|
airspeed_error = (airspeed_error - airspeed);
|
|
#endif
|
|
|
|
calc_throttle();
|
|
calc_nav_pitch();
|
|
break;
|
|
|
|
case STABILIZE:
|
|
nav_roll = 0;
|
|
nav_pitch = 0;
|
|
// throttle is passthrough
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// we have no GPS installed and have lost radio contact
|
|
// or we just want to fly around in a gentle circle w/o GPS
|
|
// ----------------------------------------------------
|
|
nav_roll = get(PARAM_LIM_ROLL) / 3;
|
|
nav_pitch = 0;
|
|
|
|
if (failsafe == true){
|
|
servo_out[CH_THROTTLE] = get(PARAM_TRIM_THROTTLE);
|
|
}
|
|
break;
|
|
|
|
case MANUAL:
|
|
// servo_out is for Sim control only
|
|
// ---------------------------------
|
|
servo_out[CH_ROLL] = reverse_roll * (radio_in[CH_ROLL] - radio_trim(CH_ROLL)) * 9;
|
|
servo_out[CH_PITCH] = reverse_pitch * (radio_in[CH_PITCH] - radio_trim(CH_PITCH)) * 9;
|
|
servo_out[CH_RUDDER] = reverse_rudder * (radio_in[CH_RUDDER] - radio_trim(CH_RUDDER)) * 9;
|
|
break;
|
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
|
|
|
|
}
|
|
}
|
|
}
|