ardupilot/libraries/AP_Math/tests/test_geodesic_grid.cpp
Pierre Kancir 519b1a6913 AP_Math: correct and increase unit test coverage
AP_Math: correct some tests

AP_Math: more vector2 tests

AP_Math: make test_vector2 complete

AP_Math: add initial unittest for vector3
2021-06-09 18:06:18 +10:00

236 lines
8.2 KiB
C++

/*
* Copyright (C) 2015-2016 Intel Corporation. All rights reserved.
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <vector>
#include "math_test.h"
#include <AP_Math/AP_GeodesicGrid.h>
class TestParam {
public:
/**
* Vector to be tested.
*/
Vector3f v;
/**
* Expected section if when AP_GeodesicGrid::section() is called with
* inclusive set as false.
*/
int section;
/**
* Array terminated with -1. This doesn't have to be touched if #section
* isn't negative. If #section is -1, then calling
* AP_GeodesicGrid::section() with inclusive set as true expects a return
* value as one of the values in #inclusive_sections.
*/
int inclusive_sections[7];
};
class GeodesicGridTest : public ::testing::TestWithParam<TestParam> {
protected:
/**
* Test the functions for triangles indexes.
*
* @param p[in] The test parameter.
*/
void test_triangles_indexes(const TestParam &p) {
if (p.section >= 0) {
int expected_triangle =
p.section / AP_GeodesicGrid::NUM_SUBTRIANGLES;
int triangle = AP_GeodesicGrid::_triangle_index(p.v, false);
ASSERT_EQ(expected_triangle, triangle);
int expected_subtriangle =
p.section % AP_GeodesicGrid::NUM_SUBTRIANGLES;
int subtriangle =
AP_GeodesicGrid::_subtriangle_index(triangle, p.v, false);
ASSERT_EQ(expected_subtriangle, subtriangle);
} else {
int triangle = AP_GeodesicGrid::_triangle_index(p.v, false);
if (triangle >= 0) {
int subtriangle = AP_GeodesicGrid::_subtriangle_index(triangle,
p.v,
false);
ASSERT_EQ(-1, subtriangle) << "triangle is " << triangle;
}
}
}
};
static const Vector3f triangles[20][3] = {
{{-M_GOLDEN, 1, 0}, {-1, 0,-M_GOLDEN}, {-M_GOLDEN,-1, 0}},
{{-1, 0,-M_GOLDEN}, {-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN,-1}},
{{-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN,-1}, { 0,-M_GOLDEN, 1}},
{{-1, 0,-M_GOLDEN}, { 0,-M_GOLDEN,-1}, { 1, 0,-M_GOLDEN}},
{{ 0,-M_GOLDEN,-1}, { 0,-M_GOLDEN, 1}, { M_GOLDEN,-1, 0}},
{{ 0,-M_GOLDEN,-1}, { 1, 0,-M_GOLDEN}, { M_GOLDEN,-1, 0}},
{{ M_GOLDEN,-1, 0}, { 1, 0,-M_GOLDEN}, { M_GOLDEN, 1, 0}},
{{ 1, 0,-M_GOLDEN}, { M_GOLDEN, 1, 0}, { 0, M_GOLDEN,-1}},
{{ 1, 0,-M_GOLDEN}, { 0, M_GOLDEN,-1}, {-1, 0,-M_GOLDEN}},
{{ 0, M_GOLDEN,-1}, {-M_GOLDEN, 1, 0}, {-1, 0,-M_GOLDEN}},
{{ M_GOLDEN,-1, 0}, { 1, 0, M_GOLDEN}, { M_GOLDEN, 1, 0}},
{{ 1, 0, M_GOLDEN}, { M_GOLDEN, 1, 0}, { 0, M_GOLDEN, 1}},
{{ M_GOLDEN, 1, 0}, { 0, M_GOLDEN, 1}, { 0, M_GOLDEN,-1}},
{{ 1, 0, M_GOLDEN}, { 0, M_GOLDEN, 1}, {-1, 0, M_GOLDEN}},
{{ 0, M_GOLDEN, 1}, { 0, M_GOLDEN,-1}, {-M_GOLDEN, 1, 0}},
{{ 0, M_GOLDEN, 1}, {-1, 0, M_GOLDEN}, {-M_GOLDEN, 1, 0}},
{{-M_GOLDEN, 1, 0}, {-1, 0, M_GOLDEN}, {-M_GOLDEN,-1, 0}},
{{-1, 0, M_GOLDEN}, {-M_GOLDEN,-1, 0}, { 0,-M_GOLDEN, 1}},
{{-1, 0, M_GOLDEN}, { 0,-M_GOLDEN, 1}, { 1, 0, M_GOLDEN}},
{{ 0,-M_GOLDEN, 1}, { M_GOLDEN,-1, 0}, { 1, 0, M_GOLDEN}},
};
static bool section_triangle(unsigned int section_index,
Vector3f &a,
Vector3f &b,
Vector3f &c) {
if (section_index >= 80) {
return false; // LCOV_EXCL_LINE
}
unsigned int i = section_index / 4;
unsigned int j = section_index % 4;
auto &t = triangles[i];
Vector3f mt[3]{(t[0] + t[1]) / 2, (t[1] + t[2]) / 2, (t[2] + t[0]) / 2};
switch (j) {
case 0:
a = mt[0];
b = mt[1];
c = mt[2];
break;
case 1:
a = t[0];
b = mt[0];
c = mt[2];
break;
case 2:
a = mt[0];
b = t[1];
c = mt[1];
break;
case 3:
a = mt[2];
b = mt[1];
c = t[2];
break;
}
return true;
}
AP_GTEST_PRINTATBLE_PARAM_MEMBER(TestParam, v);
TEST_P(GeodesicGridTest, Sections)
{
auto p = GetParam();
test_triangles_indexes(p);
EXPECT_EQ(p.section, AP_GeodesicGrid::section(p.v));
if (p.section < 0) {
int s = AP_GeodesicGrid::section(p.v, true);
int i;
for (i = 0; p.inclusive_sections[i] > 0; i++) {
assert(i < 7);
if (s == p.inclusive_sections[i]) {
break;
}
}
if (p.inclusive_sections[i] < 0) {
ADD_FAILURE() << "section " << s << " with inclusive=true not found in inclusive_sections"; // LCOV_EXCL_LINE
}
}
}
static TestParam icosahedron_vertices[] = {
{{ M_GOLDEN, 1.0f, 0.0f}, -1, {27, 30, 43, 46, 49, -1}},
{{ M_GOLDEN, -1.0f, 0.0f}, -1, {19, 23, 25, 41, 78, -1}},
{{-M_GOLDEN, 1.0f, 0.0f}, -1, { 1, 38, 59, 63, 65, -1}},
{{-M_GOLDEN, -1.0f, 0.0f}, -1, { 3, 6, 9, 67, 70, -1}},
{{ 1.0f, 0.0f, M_GOLDEN}, -1, {42, 45, 53, 75, 79, -1}},
{{-1.0f, 0.0f, M_GOLDEN}, -1, {55, 62, 66, 69, 73, -1}},
{{ 1.0f, 0.0f, -M_GOLDEN}, -1, {15, 22, 26, 29, 33, -1}},
{{-1.0f, 0.0f, -M_GOLDEN}, -1, { 2, 5, 13, 35, 39, -1}},
{{0.0f, M_GOLDEN, 1.0f}, -1, {47, 50, 54, 57, 61, -1}},
{{0.0f, M_GOLDEN, -1.0f}, -1, {31, 34, 37, 51, 58, -1}},
{{0.0f, -M_GOLDEN, 1.0f}, -1, {11, 18, 71, 74, 77, -1}},
{{0.0f, -M_GOLDEN, -1.0f}, -1, { 7, 10, 14, 17, 21, -1}},
};
INSTANTIATE_TEST_CASE_P(IcosahedronVertices,
GeodesicGridTest,
::testing::ValuesIn(icosahedron_vertices));
/* Generate vectors for each triangle */
static std::vector<TestParam> general_vectors = []()
{
std::vector<TestParam> params;
for (int i = 0; i < 20 * AP_GeodesicGrid::NUM_SUBTRIANGLES; i++) {
Vector3f a, b, c;
TestParam p;
section_triangle(i, a, b, c);
p.section = i;
/* Vector that crosses the centroid */
p.v = a + b + c;
params.push_back(p);
/* Vectors that cross the triangle close to the edges */
p.v = a + b + c * 0.001f;
params.push_back(p);
p.v = a + b * 0.001f + c;
params.push_back(p);
p.v = a * 0.001f + b + c;
params.push_back(p);
/* Vectors that cross the triangle close to the vertices */
p.v = a + b * 0.001 + c * 0.001f;
params.push_back(p);
p.v = a * 0.001f + b + c * 0.001f;
params.push_back(p);
p.v = a * 0.001f + b * 0.001f + c;
params.push_back(p);
}
return params;
}();
INSTANTIATE_TEST_CASE_P(GeneralVectors,
GeodesicGridTest,
::testing::ValuesIn(general_vectors));
/* Other hardcoded vectors, so we don't rely just on the centroid vectors
* (which are dependent on how the triangles are *defined by the
* implementation*)
*
* See AP_GeodesicGrid.h for the notation on the comments below.
*/
static TestParam hardcoded_vectors[] = {
/* a + 2 * m_a + .5 * m_c for T_4 */
{{.25f * M_GOLDEN, -.25f * (13.0f * M_GOLDEN + 1.0f), - 1.25f}, 17},
/* 3 * m_a + 2 * m_b 0 * m_c for T_4 */
{{M_GOLDEN, -4.0f * M_GOLDEN -1.0f, 1.0f}, -1, {16, 18, -1}},
/* 2 * m_c + (1 / 3) * m_b + .1 * c for T_13 */
{{-.2667f, .1667f * M_GOLDEN, 2.2667f * M_GOLDEN + .1667f}, 55},
/* .25 * m_a + 5 * b + 2 * m_b for T_8 */
{{-.875f, 6.125f * M_GOLDEN, -1.125f * M_GOLDEN - 6.125f}, 34},
};
INSTANTIATE_TEST_CASE_P(HardcodedVectors,
GeodesicGridTest,
::testing::ValuesIn(hardcoded_vectors));
AP_GTEST_MAIN()