mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 01:28:29 -04:00
a00edcbbb6
This will enable users of Rover to plug their sonar's in (or any other device into the 3.3v ADC) and log the data but not use the data in navigation and obstacle avoidance.
122 lines
3.9 KiB
C++
122 lines
3.9 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Rover.h"
|
|
|
|
void Rover::init_barometer(bool full_calibration)
|
|
{
|
|
gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer");
|
|
if (full_calibration) {
|
|
barometer.calibrate();
|
|
} else {
|
|
barometer.update_calibration();
|
|
}
|
|
gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
|
|
}
|
|
|
|
void Rover::init_sonar(void)
|
|
{
|
|
sonar.init();
|
|
}
|
|
|
|
// read_battery - reads battery voltage and current and invokes failsafe
|
|
// should be called at 10hz
|
|
void Rover::read_battery(void)
|
|
{
|
|
battery.read();
|
|
}
|
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink
|
|
// RC_CHANNELS_SCALED message
|
|
void Rover::read_receiver_rssi(void)
|
|
{
|
|
receiver_rssi = rssi.read_receiver_rssi_uint8();
|
|
}
|
|
|
|
//Calibrate compass
|
|
void Rover::compass_cal_update() {
|
|
if (!hal.util->get_soft_armed()) {
|
|
compass.compass_cal_update();
|
|
}
|
|
}
|
|
|
|
// Accel calibration
|
|
|
|
void Rover::accel_cal_update() {
|
|
if (hal.util->get_soft_armed()) {
|
|
return;
|
|
}
|
|
ins.acal_update();
|
|
// check if new trim values, and set them float trim_roll, trim_pitch;
|
|
float trim_roll,trim_pitch;
|
|
if(ins.get_new_trim(trim_roll, trim_pitch)) {
|
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
|
|
}
|
|
}
|
|
|
|
// read the sonars
|
|
void Rover::read_sonars(void)
|
|
{
|
|
sonar.update();
|
|
|
|
if (sonar.status() == RangeFinder::RangeFinder_NotConnected) {
|
|
// this makes it possible to disable sonar at runtime
|
|
return;
|
|
}
|
|
|
|
if (sonar.has_data(1)) {
|
|
// we have two sonars
|
|
obstacle.sonar1_distance_cm = sonar.distance_cm(0);
|
|
obstacle.sonar2_distance_cm = sonar.distance_cm(1);
|
|
if (obstacle.sonar1_distance_cm < (uint16_t)g.sonar_trigger_cm &&
|
|
obstacle.sonar1_distance_cm < (uint16_t)obstacle.sonar2_distance_cm) {
|
|
// we have an object on the left
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar1 obstacle %u cm",
|
|
(unsigned)obstacle.sonar1_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = g.sonar_turn_angle;
|
|
} else if (obstacle.sonar2_distance_cm < (uint16_t)g.sonar_trigger_cm) {
|
|
// we have an object on the right
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar2 obstacle %u cm",
|
|
(unsigned)obstacle.sonar2_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = -g.sonar_turn_angle;
|
|
}
|
|
} else {
|
|
// we have a single sonar
|
|
obstacle.sonar1_distance_cm = sonar.distance_cm(0);
|
|
obstacle.sonar2_distance_cm = 0;
|
|
if (obstacle.sonar1_distance_cm < (uint16_t)g.sonar_trigger_cm) {
|
|
// obstacle detected in front
|
|
if (obstacle.detected_count < 127) {
|
|
obstacle.detected_count++;
|
|
}
|
|
if (obstacle.detected_count == g.sonar_debounce) {
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar obstacle %u cm",
|
|
(unsigned)obstacle.sonar1_distance_cm);
|
|
}
|
|
obstacle.detected_time_ms = AP_HAL::millis();
|
|
obstacle.turn_angle = g.sonar_turn_angle;
|
|
}
|
|
}
|
|
|
|
Log_Write_Sonar();
|
|
|
|
// no object detected - reset after the turn time
|
|
if (obstacle.detected_count >= g.sonar_debounce &&
|
|
AP_HAL::millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) {
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Obstacle passed");
|
|
obstacle.detected_count = 0;
|
|
obstacle.turn_angle = 0;
|
|
}
|
|
}
|