mirror of https://github.com/ArduPilot/ardupilot
1036 lines
28 KiB
Plaintext
1036 lines
28 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
/*
|
|
ArduCopterMega Version 0.1.3 Experimental
|
|
Authors: Jason Short
|
|
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen
|
|
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier
|
|
|
|
|
|
This firmware is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Header includes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// AVR runtime
|
|
#include <avr/io.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <math.h>
|
|
|
|
// Libraries
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
#include <APM_BinComm.h>
|
|
#include <APM_RC.h> // ArduPilot Mega RC Library
|
|
#include <AP_GPS.h> // ArduPilot GPS library
|
|
#include <Wire.h> // Arduino I2C lib
|
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
|
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library
|
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library
|
|
#include <AP_DCM.h> // ArduPilot Mega DCM Library
|
|
#include <PID.h> // PID library
|
|
#include <RC_Channel.h> // RC Channel Library
|
|
#include <AP_RangeFinder.h> // Range finder library
|
|
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
|
|
|
// Configuration
|
|
#include "config.h"
|
|
|
|
// Local modules
|
|
#include "defines.h"
|
|
#include "Parameters.h"
|
|
#include "global_data.h"
|
|
#include "GCS.h"
|
|
#include "HIL.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Serial ports
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Note that FastSerial port buffers are allocated at ::begin time,
|
|
// so there is not much of a penalty to defining ports that we don't
|
|
// use.
|
|
//
|
|
FastSerialPort0(Serial); // FTDI/console
|
|
FastSerialPort1(Serial1); // GPS port
|
|
FastSerialPort3(Serial3); // Telemetry port
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Global parameters are all contained within the 'g' class.
|
|
//
|
|
Parameters g;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// There are three basic options related to flight sensor selection.
|
|
//
|
|
// - Normal flight mode. Real sensors are used.
|
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
|
// protocol supplies attitude information directly.
|
|
// - HIL Sensors mode. Synthetic sensors are configured that
|
|
// supply data from the simulation.
|
|
//
|
|
|
|
// All GPS access should be through this pointer.
|
|
GPS *g_gps;
|
|
|
|
#if HIL_MODE == HIL_MODE_NONE
|
|
|
|
// real sensors
|
|
AP_ADC_ADS7844 adc;
|
|
APM_BMP085_Class barometer;
|
|
AP_Compass_HMC5843 compass(Parameters::k_param_compass);
|
|
|
|
// real GPS selection
|
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
|
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
|
AP_GPS_NMEA g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
|
AP_GPS_SIRF g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
|
AP_GPS_UBLOX g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
|
AP_GPS_MTK g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
|
|
AP_GPS_MTK16 g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
|
AP_GPS_None g_gps_driver(NULL);
|
|
|
|
#else
|
|
#error Unrecognised GPS_PROTOCOL setting.
|
|
#endif // GPS PROTOCOL
|
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS
|
|
// sensor emulators
|
|
AP_ADC_HIL adc;
|
|
APM_BMP085_HIL_Class barometer;
|
|
AP_Compass_HIL compass;
|
|
AP_GPS_HIL g_gps_driver(NULL);
|
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
|
AP_DCM_HIL dcm;
|
|
AP_GPS_HIL g_gps_driver(NULL);
|
|
AP_Compass_HIL compass; // never used
|
|
AP_IMU_Shim imu; // never used
|
|
|
|
#else
|
|
#error Unrecognised HIL_MODE setting.
|
|
#endif // HIL MODE
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK
|
|
GCS_MAVLINK hil;
|
|
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE
|
|
HIL_XPLANE hil;
|
|
#endif // HIL PROTOCOL
|
|
#endif // HIL_MODE
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
#if HIL_MODE != HIL_MODE_SENSORS
|
|
AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration); // normal imu
|
|
#else
|
|
AP_IMU_Shim imu; // hil imu
|
|
#endif
|
|
AP_DCM dcm(&imu, g_gps); // normal dcm
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GCS selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
GCS_MAVLINK gcs;
|
|
#else
|
|
// If we are not using a GCS, we need a stub that does nothing.
|
|
GCS_Class gcs;
|
|
#endif
|
|
|
|
AP_RangeFinder_MaxsonarXL sonar;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
byte control_mode = STABILIZE;
|
|
byte oldSwitchPosition; // for remembering the control mode switch
|
|
|
|
const char *comma = ",";
|
|
|
|
const char* flight_mode_strings[] = {
|
|
"STABILIZE",
|
|
"ACRO",
|
|
"ALT_HOLD",
|
|
"FBW",
|
|
"AUTO",
|
|
"LOITER",
|
|
"POSITION_HOLD",
|
|
"RTL",
|
|
"TAKEOFF",
|
|
"LAND"};
|
|
|
|
/* Radio values
|
|
Channel assignments
|
|
1 Ailerons (rudder if no ailerons)
|
|
2 Elevator
|
|
3 Throttle
|
|
4 Rudder (if we have ailerons)
|
|
5 Mode - 3 position switch
|
|
6 User assignable
|
|
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
|
|
8 TBD
|
|
*/
|
|
|
|
// Radio
|
|
// -----
|
|
int motor_out[4];
|
|
Vector3f omega;
|
|
|
|
// Failsafe
|
|
// --------
|
|
boolean failsafe; // did our throttle dip below the failsafe value?
|
|
boolean ch3_failsafe;
|
|
boolean motor_armed;
|
|
boolean motor_auto_safe;
|
|
|
|
// PIDs
|
|
// ----
|
|
int max_stabilize_dampener; //
|
|
int max_yaw_dampener; //
|
|
boolean rate_yaw_flag; // used to transition yaw control from Rate control to Yaw hold
|
|
|
|
// LED output
|
|
// ----------
|
|
boolean motor_light; // status of the Motor safety
|
|
boolean GPS_light; // status of the GPS light
|
|
|
|
// GPS variables
|
|
// -------------
|
|
const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage
|
|
float scaleLongUp = 1; // used to reverse longtitude scaling
|
|
float scaleLongDown = 1; // used to reverse longtitude scaling
|
|
byte ground_start_count = 5; // have we achieved first lock and set Home?
|
|
|
|
// Location & Navigation
|
|
// ---------------------
|
|
const float radius_of_earth = 6378100; // meters
|
|
const float gravity = 9.81; // meters/ sec^2
|
|
long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate
|
|
long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target
|
|
long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target
|
|
int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate
|
|
float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1?
|
|
|
|
byte command_must_index; // current command memory location
|
|
byte command_may_index; // current command memory location
|
|
byte command_must_ID; // current command ID
|
|
byte command_may_ID; // current command ID
|
|
|
|
float cos_roll_x = 1;
|
|
float cos_pitch_x = 1;
|
|
float cos_yaw_x = 1;
|
|
float sin_pitch_y, sin_yaw_y, sin_roll_y;
|
|
|
|
// Airspeed
|
|
// --------
|
|
int airspeed; // m/s * 100
|
|
|
|
// Location Errors
|
|
// ---------------
|
|
long bearing_error; // deg * 100 : 0 to 36000
|
|
long altitude_error; // meters * 100 we are off in altitude
|
|
float crosstrack_error; // meters we are off trackline
|
|
long distance_error; // distance to the WP
|
|
long yaw_error; // how off are we pointed
|
|
long long_error, lat_error; // temp for debugging
|
|
|
|
// Battery Sensors
|
|
// ---------------
|
|
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter
|
|
float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter
|
|
float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter
|
|
float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
|
|
float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
|
|
|
|
float current_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
|
|
float current_amps;
|
|
float current_total;
|
|
|
|
// Airspeed Sensors
|
|
// ----------------
|
|
|
|
// Barometer Sensor variables
|
|
// --------------------------
|
|
unsigned long abs_pressure;
|
|
unsigned long ground_pressure;
|
|
int ground_temperature;
|
|
|
|
// Altitude Sensor variables
|
|
// ----------------------
|
|
long sonar_alt;
|
|
long baro_alt;
|
|
byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR
|
|
|
|
// flight mode specific
|
|
// --------------------
|
|
boolean takeoff_complete; // Flag for using take-off controls
|
|
boolean land_complete;
|
|
int takeoff_altitude;
|
|
int landing_distance; // meters;
|
|
long old_alt; // used for managing altitude rates
|
|
int velocity_land;
|
|
|
|
// Loiter management
|
|
// -----------------
|
|
long old_target_bearing; // deg * 100
|
|
int loiter_total; // deg : how many times to loiter * 360
|
|
int loiter_delta; // deg : how far we just turned
|
|
int loiter_sum; // deg : how far we have turned around a waypoint
|
|
long loiter_time; // millis : when we started LOITER mode
|
|
int loiter_time_max; // millis : how long to stay in LOITER mode
|
|
|
|
// these are the values for navigation control functions
|
|
// ----------------------------------------------------
|
|
long nav_roll; // deg * 100 : target roll angle
|
|
long nav_pitch; // deg * 100 : target pitch angle
|
|
long nav_yaw; // deg * 100 : target yaw angle
|
|
long nav_lat; // for error calcs
|
|
long nav_lon; // for error calcs
|
|
int nav_throttle; // 0-1000 for throttle control
|
|
int nav_throttle_old; // for filtering
|
|
|
|
long command_yaw_start; // what angle were we to begin with
|
|
long command_yaw_start_time; // when did we start turning
|
|
int command_yaw_time; // how long we are turning
|
|
long command_yaw_end; // what angle are we trying to be
|
|
long command_yaw_delta; // how many degrees will we turn
|
|
int command_yaw_speed; // how fast to turn
|
|
byte command_yaw_dir;
|
|
|
|
// Waypoints
|
|
// ---------
|
|
long wp_distance; // meters - distance between plane and next waypoint
|
|
long wp_totalDistance; // meters - distance between old and next waypoint
|
|
byte next_wp_index; // Current active command index
|
|
|
|
// repeating event control
|
|
// -----------------------
|
|
byte event_id; // what to do - see defines
|
|
long event_timer; // when the event was asked for in ms
|
|
int event_delay; // how long to delay the next firing of event in millis
|
|
int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice
|
|
int event_value; // per command value, such as PWM for servos
|
|
int event_undo_value; // the value used to undo commands
|
|
byte repeat_forever;
|
|
byte undo_event; // counter for timing the undo
|
|
|
|
// delay command
|
|
// --------------
|
|
int delay_timeout; // used to delay commands
|
|
long delay_start; // used to delay commands
|
|
|
|
// 3D Location vectors
|
|
// -------------------
|
|
struct Location home; // home location
|
|
struct Location prev_WP; // last waypoint
|
|
struct Location current_loc; // current location
|
|
struct Location next_WP; // next waypoint
|
|
struct Location tell_command; // command for telemetry
|
|
struct Location next_command; // command preloaded
|
|
long target_altitude; // used for
|
|
long offset_altitude; // used for
|
|
boolean home_is_set; // Flag for if we have g_gps lock and have set the home location
|
|
|
|
|
|
// IMU variables
|
|
// -------------
|
|
float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm)
|
|
|
|
|
|
// Performance monitoring
|
|
// ----------------------
|
|
long perf_mon_timer;
|
|
float imu_health; // Metric based on accel gain deweighting
|
|
int G_Dt_max; // Max main loop cycle time in milliseconds
|
|
byte gyro_sat_count;
|
|
byte adc_constraints;
|
|
byte renorm_sqrt_count;
|
|
byte renorm_blowup_count;
|
|
int gps_fix_count;
|
|
byte gcs_messages_sent;
|
|
|
|
|
|
// GCS
|
|
// ---
|
|
char GCS_buffer[53];
|
|
char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed
|
|
|
|
// System Timers
|
|
// --------------
|
|
unsigned long fast_loopTimer; // Time in miliseconds of main control loop
|
|
unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete
|
|
uint8_t delta_ms_fast_loop; // Delta Time in miliseconds
|
|
int mainLoop_count;
|
|
|
|
unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop
|
|
byte medium_loopCounter; // Counters for branching from main control loop to slower loops
|
|
uint8_t delta_ms_medium_loop;
|
|
|
|
byte slow_loopCounter;
|
|
byte superslow_loopCounter;
|
|
byte fbw_timer; // for limiting the execution of FBW input
|
|
|
|
unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav
|
|
unsigned long nav2_loopTimer; // used to track the elapsed ime for GPS nav
|
|
|
|
unsigned long dTnav; // Delta Time in milliseconds for navigation computations
|
|
unsigned long dTnav2; // Delta Time in milliseconds for navigation computations
|
|
unsigned long elapsedTime; // for doing custom events
|
|
float load; // % MCU cycles used
|
|
|
|
byte counter_one_herz;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Top-level logic
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void setup() {
|
|
init_ardupilot();
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
// We want this to execute at 100Hz
|
|
// --------------------------------
|
|
if (millis() - fast_loopTimer > 9) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
fast_loopTimer = millis();
|
|
load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
mainLoop_count++;
|
|
|
|
// Execute the fast loop
|
|
// ---------------------
|
|
fast_loop();
|
|
fast_loopTimeStamp = millis();
|
|
}
|
|
|
|
if (millis() - medium_loopTimer > 19) {
|
|
delta_ms_medium_loop = millis() - medium_loopTimer;
|
|
medium_loopTimer = millis();
|
|
|
|
medium_loop();
|
|
|
|
counter_one_herz++;
|
|
if(counter_one_herz == 50){
|
|
super_slow_loop();
|
|
}
|
|
|
|
if (millis() - perf_mon_timer > 20000) {
|
|
if (mainLoop_count != 0) {
|
|
gcs.send_message(MSG_PERF_REPORT);
|
|
if (g.log_bitmask & MASK_LOG_PM)
|
|
Log_Write_Performance();
|
|
|
|
resetPerfData();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Main loop 50-100Hz
|
|
void fast_loop()
|
|
{
|
|
// IMU DCM Algorithm
|
|
read_AHRS();
|
|
|
|
// This is the fast loop - we want it to execute at >= 100Hz
|
|
// ---------------------------------------------------------
|
|
if (delta_ms_fast_loop > G_Dt_max)
|
|
G_Dt_max = delta_ms_fast_loop;
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
update_current_flight_mode();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos_4();
|
|
}
|
|
|
|
void medium_loop()
|
|
{
|
|
// Read radio
|
|
// ----------
|
|
read_radio(); // read the radio first
|
|
|
|
|
|
// reads all of the necessary trig functions for cameras, throttle, etc.
|
|
update_trig();
|
|
|
|
// This is the start of the medium (10 Hz) loop pieces
|
|
// -----------------------------------------
|
|
switch(medium_loopCounter) {
|
|
|
|
// This case deals with the GPS
|
|
//-------------------------------
|
|
case 0:
|
|
medium_loopCounter++;
|
|
update_GPS();
|
|
//readCommands();
|
|
|
|
if(g.compass_enabled){
|
|
compass.read(); // Read magnetometer
|
|
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading
|
|
compass.null_offsets(dcm.get_dcm_matrix());
|
|
}
|
|
|
|
break;
|
|
|
|
// This case performs some navigation computations
|
|
//------------------------------------------------
|
|
case 1:
|
|
medium_loopCounter++;
|
|
|
|
if(g_gps->new_data){
|
|
g_gps->new_data = false;
|
|
dTnav = millis() - nav_loopTimer;
|
|
nav_loopTimer = millis();
|
|
|
|
// calculate the plane's desired bearing
|
|
// -------------------------------------
|
|
navigate();
|
|
}
|
|
|
|
// calc pitch and roll to target
|
|
// -----------------------------
|
|
dTnav2 = millis() - nav2_loopTimer;
|
|
nav2_loopTimer = millis();
|
|
calc_nav();
|
|
|
|
break;
|
|
|
|
// command processing
|
|
//-------------------
|
|
case 2:
|
|
medium_loopCounter++;
|
|
|
|
// Read altitude from sensors
|
|
// ------------------
|
|
update_alt();
|
|
|
|
// perform next command
|
|
// --------------------
|
|
update_commands();
|
|
break;
|
|
|
|
// This case deals with sending high rate telemetry
|
|
//-------------------------------------------------
|
|
case 3:
|
|
medium_loopCounter++;
|
|
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED && (g.log_bitmask & MASK_LOG_ATTITUDE_FAST == 0))
|
|
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor);
|
|
|
|
if (g.log_bitmask & MASK_LOG_CTUN)
|
|
Log_Write_Control_Tuning();
|
|
|
|
if (g.log_bitmask & MASK_LOG_NTUN)
|
|
Log_Write_Nav_Tuning();
|
|
|
|
if (g.log_bitmask & MASK_LOG_GPS){
|
|
if(home_is_set)
|
|
Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats);
|
|
}
|
|
gcs.send_message(MSG_ATTITUDE); // Sends attitude data
|
|
break;
|
|
|
|
// This case controls the slow loop
|
|
//---------------------------------
|
|
case 4:
|
|
if (g.current_enabled){
|
|
read_current();
|
|
}
|
|
|
|
// shall we trim the copter?
|
|
// ------------------------
|
|
read_trim_switch();
|
|
|
|
// shall we check for engine start?
|
|
// --------------------------------
|
|
arm_motors();
|
|
|
|
medium_loopCounter = 0;
|
|
slow_loop();
|
|
break;
|
|
|
|
default:
|
|
medium_loopCounter = 0;
|
|
break;
|
|
}
|
|
|
|
// stuff that happens at 50 hz
|
|
// ---------------------------
|
|
|
|
// use Yaw to find our bearing error
|
|
calc_bearing_error();
|
|
|
|
// guess how close we are - fixed observer calc
|
|
//calc_distance_error();
|
|
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
|
|
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor);
|
|
|
|
if (g.log_bitmask & MASK_LOG_RAW)
|
|
Log_Write_Raw();
|
|
|
|
#if GCS_PROTOCOL == 6 // This is here for Benjamin Pelletier. Please do not remove without checking with me. Doug W
|
|
readgcsinput();
|
|
#endif
|
|
|
|
#if ENABLE_CAM
|
|
camera_stabilization();
|
|
#endif
|
|
|
|
// kick the GCS to process uplink data
|
|
gcs.update();
|
|
}
|
|
|
|
void slow_loop()
|
|
{
|
|
// This is the slow (3 1/3 Hz) loop pieces
|
|
//----------------------------------------
|
|
switch (slow_loopCounter){
|
|
case 0:
|
|
slow_loopCounter++;
|
|
superslow_loopCounter++;
|
|
|
|
if(superslow_loopCounter >= 200){ // Execute every minute
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if(g.compass_enabled) {
|
|
compass.save_offsets();
|
|
}
|
|
#endif
|
|
|
|
superslow_loopCounter = 0;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
slow_loopCounter++;
|
|
|
|
// Read 3-position switch on radio
|
|
// -------------------------------
|
|
read_control_switch();
|
|
|
|
// Read main battery voltage if hooked up - does not read the 5v from radio
|
|
// ------------------------------------------------------------------------
|
|
#if BATTERY_EVENT == 1
|
|
read_battery();
|
|
#endif
|
|
|
|
break;
|
|
|
|
case 2:
|
|
slow_loopCounter = 0;
|
|
update_events();
|
|
|
|
// XXX this should be a "GCS slow loop" interface
|
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
|
|
gcs.data_stream_send(1,5);
|
|
// send all requested output streams with rates requested
|
|
// between 1 and 5 Hz
|
|
#else
|
|
gcs.send_message(MSG_LOCATION);
|
|
// XXX gcs.send_message(MSG_CPU_LOAD, load*100);
|
|
#endif
|
|
|
|
gcs.send_message(MSG_HEARTBEAT); // XXX This is running at 3 1/3 Hz instead of 1 Hz
|
|
|
|
break;
|
|
|
|
default:
|
|
slow_loopCounter = 0;
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
void super_slow_loop()
|
|
{
|
|
if (g.log_bitmask & MASK_LOG_CUR)
|
|
Log_Write_Current();
|
|
}
|
|
|
|
|
|
void update_GPS(void)
|
|
{
|
|
g_gps->update();
|
|
update_GPS_light();
|
|
|
|
if (g_gps->new_data && g_gps->fix) {
|
|
// XXX We should be sending GPS data off one of the regular loops so that we send
|
|
// no-GPS-fix data too
|
|
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK
|
|
gcs.send_message(MSG_LOCATION);
|
|
#endif
|
|
|
|
// for performance
|
|
// ---------------
|
|
gps_fix_count++;
|
|
|
|
if(ground_start_count > 1){
|
|
ground_start_count--;
|
|
|
|
} else if (ground_start_count == 1) {
|
|
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
SendDebugln("!! bad loc");
|
|
ground_start_count = 5;
|
|
|
|
}else{
|
|
//Serial.printf("init Home!");
|
|
|
|
if (g.log_bitmask & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
|
|
// reset our nav loop timer
|
|
nav_loopTimer = millis();
|
|
init_home();
|
|
|
|
// init altitude
|
|
current_loc.alt = g_gps->altitude;
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
current_loc.lng = g_gps->longitude; // Lon * 10 * *7
|
|
current_loc.lat = g_gps->latitude; // Lat * 10 * *7
|
|
|
|
}
|
|
}
|
|
|
|
void update_current_flight_mode(void)
|
|
{
|
|
if(control_mode == AUTO){
|
|
|
|
switch(command_must_ID){
|
|
//case MAV_CMD_NAV_TAKEOFF:
|
|
// break;
|
|
|
|
//case MAV_CMD_NAV_LAND:
|
|
// break;
|
|
|
|
default:
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
auto_yaw();
|
|
|
|
// mix in user control
|
|
control_nav_mixer();
|
|
|
|
// perform stabilzation
|
|
output_stabilize_roll();
|
|
output_stabilize_pitch();
|
|
|
|
// apply throttle control
|
|
output_auto_throttle();
|
|
break;
|
|
}
|
|
|
|
}else{
|
|
|
|
switch(control_mode){
|
|
case ACRO:
|
|
// clear any AP naviagtion values
|
|
nav_pitch = 0;
|
|
nav_roll = 0;
|
|
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
|
|
// Yaw control
|
|
output_manual_yaw();
|
|
|
|
// apply throttle control
|
|
output_manual_throttle();
|
|
|
|
// mix in user control
|
|
control_nav_mixer();
|
|
|
|
// perform rate or stabilzation
|
|
// ----------------------------
|
|
|
|
// Roll control
|
|
if(abs(g.rc_1.control_in) >= ACRO_RATE_TRIGGER){
|
|
output_rate_roll(); // rate control yaw
|
|
}else{
|
|
output_stabilize_roll(); // hold yaw
|
|
}
|
|
|
|
// Roll control
|
|
if(abs(g.rc_2.control_in) >= ACRO_RATE_TRIGGER){
|
|
output_rate_pitch(); // rate control yaw
|
|
}else{
|
|
output_stabilize_pitch(); // hold yaw
|
|
}
|
|
break;
|
|
|
|
case LOITER:
|
|
case STABILIZE:
|
|
// clear any AP naviagtion values
|
|
nav_pitch = 0;
|
|
nav_roll = 0;
|
|
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
|
|
// Yaw control
|
|
output_manual_yaw();
|
|
|
|
// apply throttle control
|
|
output_manual_throttle();
|
|
|
|
// mix in user control
|
|
control_nav_mixer();
|
|
|
|
// perform stabilzation
|
|
output_stabilize_roll();
|
|
output_stabilize_pitch();
|
|
break;
|
|
|
|
case FBW:
|
|
// we are currently using manual throttle during alpha testing.
|
|
fbw_timer++;
|
|
|
|
//call at 5 hz
|
|
if(fbw_timer > 20){
|
|
fbw_timer = 0;
|
|
|
|
if(home_is_set == false){
|
|
scaleLongDown = 1;
|
|
// we are not using GPS
|
|
// reset the location
|
|
// RTL won't function
|
|
current_loc.lat = home.lat = 0;
|
|
current_loc.lng = home.lng = 0;
|
|
// set dTnav manually
|
|
dTnav = 200;
|
|
}
|
|
|
|
next_WP.lng = home.lng + g.rc_1.control_in / 2; // X: 4500 / 2 = 2250 = 25 meteres
|
|
// forward is negative so we reverse it to get a positive North translation
|
|
next_WP.lat = home.lat - g.rc_2.control_in / 2; // Y: 4500 / 2 = 2250 = 25 meteres
|
|
}
|
|
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
|
|
// REMOVE AFTER TESTING !!!
|
|
//nav_yaw = dcm.yaw_sensor;
|
|
|
|
// Yaw control
|
|
output_manual_yaw();
|
|
|
|
// apply throttle control
|
|
output_manual_throttle();
|
|
|
|
// apply nav_pitch and nav_roll to output
|
|
fbw_nav_mixer();
|
|
|
|
// perform stabilzation
|
|
output_stabilize_roll();
|
|
output_stabilize_pitch();
|
|
break;
|
|
|
|
case ALT_HOLD:
|
|
// clear any AP naviagtion values
|
|
nav_pitch = 0;
|
|
nav_roll = 0;
|
|
|
|
//if(g.rc_3.control_in)
|
|
// get desired height from the throttle
|
|
next_WP.alt = home.alt + (g.rc_3.control_in); // 0 - 1000 (40 meters)
|
|
next_WP.alt = max(next_WP.alt, 30);
|
|
|
|
// !!! testing
|
|
//next_WP.alt -= 500;
|
|
|
|
// Yaw control
|
|
// -----------
|
|
output_manual_yaw();
|
|
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
// apply throttle control
|
|
output_auto_throttle();
|
|
|
|
// mix in user control
|
|
control_nav_mixer();
|
|
|
|
// perform stabilzation
|
|
output_stabilize_roll();
|
|
output_stabilize_pitch();
|
|
break;
|
|
|
|
case RTL:
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
auto_yaw();
|
|
|
|
// apply throttle control
|
|
output_auto_throttle();
|
|
|
|
// mix in user control
|
|
control_nav_mixer();
|
|
|
|
// perform stabilzation
|
|
output_stabilize_roll();
|
|
output_stabilize_pitch();
|
|
break;
|
|
|
|
case POSITION_HOLD:
|
|
|
|
// Yaw control
|
|
// -----------
|
|
output_manual_yaw();
|
|
|
|
// Output Pitch, Roll, Yaw and Throttle
|
|
// ------------------------------------
|
|
|
|
// apply throttle control
|
|
output_auto_throttle();
|
|
|
|
// mix in user control
|
|
control_nav_mixer();
|
|
|
|
// perform stabilzation
|
|
output_stabilize_roll();
|
|
output_stabilize_pitch();
|
|
break;
|
|
|
|
default:
|
|
//Serial.print("$");
|
|
break;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// called after a GPS read
|
|
void update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
|
|
// distance and bearing calcs only
|
|
if(control_mode == AUTO){
|
|
verify_must();
|
|
verify_may();
|
|
}else{
|
|
switch(control_mode){
|
|
case RTL:
|
|
update_crosstrack();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void read_AHRS(void)
|
|
{
|
|
// Perform IMU calculations and get attitude info
|
|
//-----------------------------------------------
|
|
dcm.update_DCM(G_Dt);
|
|
omega = dcm.get_gyro();
|
|
|
|
// Testing remove !!!
|
|
//dcm.pitch_sensor = 0;
|
|
//dcm.roll_sensor = 0;
|
|
}
|
|
|
|
void update_trig(void){
|
|
Vector2f yawvector;
|
|
Matrix3f temp = dcm.get_dcm_matrix();
|
|
|
|
yawvector.x = temp.a.x; // sin
|
|
yawvector.y = temp.b.x; // cos
|
|
yawvector.normalize();
|
|
|
|
cos_yaw_x = yawvector.y; // 0 x = north
|
|
sin_yaw_y = yawvector.x; // 1 y
|
|
|
|
sin_pitch_y = -temp.c.x;
|
|
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x));
|
|
|
|
cos_roll_x = temp.c.z / cos_pitch_x;
|
|
sin_roll_y = temp.c.y / cos_pitch_x;
|
|
}
|
|
|
|
|
|
void update_alt()
|
|
{
|
|
altitude_sensor = BARO;
|
|
baro_alt = read_barometer();
|
|
//Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt);
|
|
|
|
if(g.sonar_enabled){
|
|
// decide which sensor we're usings
|
|
sonar_alt = sonar.read();
|
|
|
|
if(baro_alt < 550){
|
|
altitude_sensor = SONAR;
|
|
}
|
|
|
|
if(sonar_alt > 600){
|
|
altitude_sensor = BARO;
|
|
}
|
|
|
|
//altitude_sensor = (target_altitude > (home.alt + 500)) ? BARO : SONAR;
|
|
|
|
if(altitude_sensor == BARO){
|
|
current_loc.alt = baro_alt + home.alt;
|
|
}else{
|
|
sonar_alt = min(sonar_alt, 600);
|
|
current_loc.alt = sonar_alt + home.alt;
|
|
}
|
|
|
|
}else{
|
|
|
|
// no sonar altitude
|
|
current_loc.alt = baro_alt + home.alt;
|
|
}
|
|
//Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt);
|
|
|
|
// altitude smoothing
|
|
// ------------------
|
|
calc_altitude_error();
|
|
|
|
// Amount of throttle to apply for hovering
|
|
// ----------------------------------------
|
|
calc_nav_throttle();
|
|
} |