mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 17:48:35 -04:00
540 lines
14 KiB
C++
540 lines
14 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
|
#include "UARTDriver.h"
|
|
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <termios.h>
|
|
#include <drivers/drv_hrt.h>
|
|
#include <assert.h>
|
|
#include <AP_HAL/utility/RingBuffer.h>
|
|
|
|
using namespace VRBRAIN;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
VRBRAINUARTDriver::VRBRAINUARTDriver(const char *devpath, const char *perf_name) :
|
|
_devpath(devpath),
|
|
_fd(-1),
|
|
_baudrate(57600),
|
|
_initialised(false),
|
|
_in_timer(false),
|
|
_perf_uart(perf_alloc(PC_ELAPSED, perf_name)),
|
|
_os_start_auto_space(-1),
|
|
_flow_control(FLOW_CONTROL_DISABLE)
|
|
{
|
|
}
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/*
|
|
this UART driver maps to a serial device in /dev
|
|
*/
|
|
|
|
void VRBRAINUARTDriver::begin(uint32_t b, uint16_t rxS, uint16_t txS)
|
|
{
|
|
if (strcmp(_devpath, "/dev/null") == 0) {
|
|
// leave uninitialised
|
|
return;
|
|
}
|
|
|
|
uint16_t min_tx_buffer = 1024;
|
|
uint16_t min_rx_buffer = 512;
|
|
if (strcmp(_devpath, "/dev/ttyACM0") == 0) {
|
|
min_tx_buffer = 16384;
|
|
min_rx_buffer = 1024;
|
|
}
|
|
// on VRBRAIN we have enough memory to have a larger transmit and
|
|
// receive buffer for all ports. This means we don't get delays
|
|
// while waiting to write GPS config packets
|
|
if (txS < min_tx_buffer) {
|
|
txS = min_tx_buffer;
|
|
}
|
|
if (rxS < min_rx_buffer) {
|
|
rxS = min_rx_buffer;
|
|
}
|
|
|
|
/*
|
|
allocate the read buffer
|
|
we allocate buffers before we successfully open the device as we
|
|
want to allocate in the early stages of boot, and cause minimum
|
|
thrashing of the heap once we are up. The ttyACM0 driver may not
|
|
connect for some time after boot
|
|
*/
|
|
if (rxS != 0 && rxS != _readbuf_size) {
|
|
_initialised = false;
|
|
while (_in_timer) {
|
|
hal.scheduler->delay(1);
|
|
}
|
|
_readbuf_size = rxS;
|
|
if (_readbuf != NULL) {
|
|
free(_readbuf);
|
|
}
|
|
_readbuf = (uint8_t *)malloc(_readbuf_size);
|
|
_readbuf_head = 0;
|
|
_readbuf_tail = 0;
|
|
}
|
|
|
|
if (b != 0) {
|
|
_baudrate = b;
|
|
}
|
|
|
|
/*
|
|
allocate the write buffer
|
|
*/
|
|
if (txS != 0 && txS != _writebuf_size) {
|
|
_initialised = false;
|
|
while (_in_timer) {
|
|
hal.scheduler->delay(1);
|
|
}
|
|
_writebuf_size = txS;
|
|
if (_writebuf != NULL) {
|
|
free(_writebuf);
|
|
}
|
|
_writebuf = (uint8_t *)malloc(_writebuf_size+16);
|
|
_writebuf_head = 0;
|
|
_writebuf_tail = 0;
|
|
}
|
|
|
|
if (_fd == -1) {
|
|
_fd = open(_devpath, O_RDWR);
|
|
if (_fd == -1) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (_baudrate != 0) {
|
|
// set the baud rate
|
|
struct termios t;
|
|
tcgetattr(_fd, &t);
|
|
cfsetspeed(&t, _baudrate);
|
|
// disable LF -> CR/LF
|
|
t.c_oflag &= ~ONLCR;
|
|
tcsetattr(_fd, TCSANOW, &t);
|
|
|
|
// separately setup IFLOW if we can. We do this as a 2nd call
|
|
// as if the port has no RTS pin then the tcsetattr() call
|
|
// will fail, and if done as one call then it would fail to
|
|
// set the baudrate.
|
|
tcgetattr(_fd, &t);
|
|
t.c_cflag |= CRTS_IFLOW;
|
|
tcsetattr(_fd, TCSANOW, &t);
|
|
}
|
|
|
|
if (_writebuf_size != 0 && _readbuf_size != 0 && _fd != -1) {
|
|
if (!_initialised) {
|
|
::printf("initialised %s OK %u %u\n", _devpath,
|
|
(unsigned)_writebuf_size, (unsigned)_readbuf_size);
|
|
}
|
|
_initialised = true;
|
|
}
|
|
}
|
|
|
|
void VRBRAINUARTDriver::set_flow_control(enum flow_control flow_control)
|
|
{
|
|
if (_fd == -1) {
|
|
return;
|
|
}
|
|
struct termios t;
|
|
tcgetattr(_fd, &t);
|
|
// we already enabled CRTS_IFLOW above, just enable output flow control
|
|
if (flow_control != FLOW_CONTROL_DISABLE) {
|
|
t.c_cflag |= CRTSCTS;
|
|
} else {
|
|
t.c_cflag &= ~CRTSCTS;
|
|
}
|
|
tcsetattr(_fd, TCSANOW, &t);
|
|
if (fcontrol == FLOW_CONTROL_AUTO) {
|
|
// reset flow control auto state machine
|
|
_total_written = 0;
|
|
_first_write_time = 0;
|
|
}
|
|
_flow_control = flow_control;
|
|
}
|
|
|
|
void VRBRAINUARTDriver::begin(uint32_t b)
|
|
{
|
|
begin(b, 0, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
try to initialise the UART. This is used to cope with the way NuttX
|
|
handles /dev/ttyACM0 (the USB port). The port appears in /dev on
|
|
boot, but cannot be opened until a USB cable is connected and the
|
|
host starts the CDCACM communication.
|
|
*/
|
|
void VRBRAINUARTDriver::try_initialise(void)
|
|
{
|
|
if (_initialised) {
|
|
return;
|
|
}
|
|
if ((hal.scheduler->millis() - _last_initialise_attempt_ms) < 2000) {
|
|
return;
|
|
}
|
|
_last_initialise_attempt_ms = hal.scheduler->millis();
|
|
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_ARMED || !hal.util->get_soft_armed()) {
|
|
begin(0);
|
|
}
|
|
}
|
|
|
|
|
|
void VRBRAINUARTDriver::end()
|
|
{
|
|
_initialised = false;
|
|
while (_in_timer) hal.scheduler->delay(1);
|
|
if (_fd != -1) {
|
|
close(_fd);
|
|
_fd = -1;
|
|
}
|
|
if (_readbuf) {
|
|
free(_readbuf);
|
|
_readbuf = NULL;
|
|
}
|
|
if (_writebuf) {
|
|
free(_writebuf);
|
|
_writebuf = NULL;
|
|
}
|
|
_readbuf_size = _writebuf_size = 0;
|
|
_writebuf_head = 0;
|
|
_writebuf_tail = 0;
|
|
_readbuf_head = 0;
|
|
_readbuf_tail = 0;
|
|
}
|
|
|
|
void VRBRAINUARTDriver::flush() {}
|
|
|
|
bool VRBRAINUARTDriver::is_initialized()
|
|
{
|
|
try_initialise();
|
|
return _initialised;
|
|
}
|
|
|
|
void VRBRAINUARTDriver::set_blocking_writes(bool blocking)
|
|
{
|
|
_nonblocking_writes = !blocking;
|
|
}
|
|
|
|
bool VRBRAINUARTDriver::tx_pending() { return false; }
|
|
|
|
/*
|
|
return number of bytes available to be read from the buffer
|
|
*/
|
|
int16_t VRBRAINUARTDriver::available()
|
|
{
|
|
if (!_initialised) {
|
|
try_initialise();
|
|
return 0;
|
|
}
|
|
uint16_t _tail;
|
|
return BUF_AVAILABLE(_readbuf);
|
|
}
|
|
|
|
/*
|
|
return number of bytes that can be added to the write buffer
|
|
*/
|
|
int16_t VRBRAINUARTDriver::txspace()
|
|
{
|
|
if (!_initialised) {
|
|
try_initialise();
|
|
return 0;
|
|
}
|
|
uint16_t _head;
|
|
return BUF_SPACE(_writebuf);
|
|
}
|
|
|
|
/*
|
|
read one byte from the read buffer
|
|
*/
|
|
int16_t VRBRAINUARTDriver::read()
|
|
{
|
|
uint8_t c;
|
|
if (!_initialised) {
|
|
try_initialise();
|
|
return -1;
|
|
}
|
|
if (_readbuf == NULL) {
|
|
return -1;
|
|
}
|
|
if (BUF_EMPTY(_readbuf)) {
|
|
return -1;
|
|
}
|
|
c = _readbuf[_readbuf_head];
|
|
BUF_ADVANCEHEAD(_readbuf, 1);
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
write one byte to the buffer
|
|
*/
|
|
size_t VRBRAINUARTDriver::write(uint8_t c)
|
|
{
|
|
if (!_initialised) {
|
|
try_initialise();
|
|
return 0;
|
|
}
|
|
if (hal.scheduler->in_timerprocess()) {
|
|
// not allowed from timers
|
|
return 0;
|
|
}
|
|
uint16_t _head;
|
|
|
|
while (BUF_SPACE(_writebuf) == 0) {
|
|
if (_nonblocking_writes) {
|
|
return 0;
|
|
}
|
|
hal.scheduler->delay(1);
|
|
}
|
|
_writebuf[_writebuf_tail] = c;
|
|
BUF_ADVANCETAIL(_writebuf, 1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
write size bytes to the write buffer
|
|
*/
|
|
size_t VRBRAINUARTDriver::write(const uint8_t *buffer, size_t size)
|
|
{
|
|
if (!_initialised) {
|
|
try_initialise();
|
|
return 0;
|
|
}
|
|
if (hal.scheduler->in_timerprocess()) {
|
|
// not allowed from timers
|
|
return 0;
|
|
}
|
|
|
|
if (!_nonblocking_writes) {
|
|
/*
|
|
use the per-byte delay loop in write() above for blocking writes
|
|
*/
|
|
size_t ret = 0;
|
|
while (size--) {
|
|
if (write(*buffer++) != 1) break;
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
uint16_t _head, space;
|
|
space = BUF_SPACE(_writebuf);
|
|
if (space == 0) {
|
|
return 0;
|
|
}
|
|
if (size > space) {
|
|
size = space;
|
|
}
|
|
if (_writebuf_tail < _head) {
|
|
// perform as single memcpy
|
|
assert(_writebuf_tail+size <= _writebuf_size);
|
|
memcpy(&_writebuf[_writebuf_tail], buffer, size);
|
|
BUF_ADVANCETAIL(_writebuf, size);
|
|
return size;
|
|
}
|
|
|
|
// perform as two memcpy calls
|
|
uint16_t n = _writebuf_size - _writebuf_tail;
|
|
if (n > size) n = size;
|
|
assert(_writebuf_tail+n <= _writebuf_size);
|
|
memcpy(&_writebuf[_writebuf_tail], buffer, n);
|
|
BUF_ADVANCETAIL(_writebuf, n);
|
|
buffer += n;
|
|
n = size - n;
|
|
if (n > 0) {
|
|
assert(_writebuf_tail+n <= _writebuf_size);
|
|
memcpy(&_writebuf[_writebuf_tail], buffer, n);
|
|
BUF_ADVANCETAIL(_writebuf, n);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
try writing n bytes, handling an unresponsive port
|
|
*/
|
|
int VRBRAINUARTDriver::_write_fd(const uint8_t *buf, uint16_t n)
|
|
{
|
|
int ret = 0;
|
|
|
|
// the FIONWRITE check is to cope with broken O_NONBLOCK behaviour
|
|
// in NuttX on ttyACM0
|
|
|
|
// FIONWRITE is also used for auto flow control detection
|
|
// Assume output flow control is not working if:
|
|
// port is configured for auto flow control
|
|
// and this is not the first write since flow control turned on
|
|
// and no data has been removed from the buffer since flow control turned on
|
|
// and more than .5 seconds elapsed after writing a total of > 5 characters
|
|
//
|
|
|
|
int nwrite = 0;
|
|
|
|
if (ioctl(_fd, FIONWRITE, (unsigned long)&nwrite) == 0) {
|
|
if (_flow_control == FLOW_CONTROL_AUTO) {
|
|
if (_first_write_time == 0) {
|
|
if (_total_written == 0) {
|
|
// save the remaining buffer bytes for comparison next write
|
|
_os_start_auto_space = nwrite;
|
|
}
|
|
} else {
|
|
if (_os_start_auto_space - nwrite + 1 >= _total_written &&
|
|
(hal.scheduler->micros64() - _first_write_time) > 500*1000UL) {
|
|
// it doesn't look like hw flow control is working
|
|
::printf("disabling flow control on %s _total_written=%u\n",
|
|
_devpath, (unsigned)_total_written);
|
|
set_flow_control(FLOW_CONTROL_DISABLE);
|
|
}
|
|
}
|
|
}
|
|
if (nwrite > n) {
|
|
nwrite = n;
|
|
}
|
|
if (nwrite > 0) {
|
|
ret = ::write(_fd, buf, nwrite);
|
|
}
|
|
}
|
|
|
|
if (ret > 0) {
|
|
BUF_ADVANCEHEAD(_writebuf, ret);
|
|
_last_write_time = hal.scheduler->micros64();
|
|
_total_written += ret;
|
|
if (! _first_write_time && _total_written > 5) {
|
|
_first_write_time = _last_write_time;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
if (hal.scheduler->micros64() - _last_write_time > 2000 &&
|
|
_flow_control == FLOW_CONTROL_DISABLE) {
|
|
#if 0
|
|
// this trick is disabled for now, as it sometimes blocks on
|
|
// re-opening the ttyACM0 port, which would cause a crash
|
|
if (hal.scheduler->micros64() - _last_write_time > 2000000) {
|
|
// we haven't done a successful write for 2 seconds - try
|
|
// reopening the port
|
|
_initialised = false;
|
|
::close(_fd);
|
|
_fd = ::open(_devpath, O_RDWR);
|
|
if (_fd == -1) {
|
|
fprintf(stdout, "Failed to reopen UART device %s - %s\n",
|
|
_devpath, strerror(errno));
|
|
// leave it uninitialised
|
|
return n;
|
|
}
|
|
|
|
_last_write_time = hal.scheduler->micros64();
|
|
_initialised = true;
|
|
}
|
|
#else
|
|
_last_write_time = hal.scheduler->micros64();
|
|
#endif
|
|
// we haven't done a successful write for 2ms, which means the
|
|
// port is running at less than 500 bytes/sec. Start
|
|
// discarding bytes, even if this is a blocking port. This
|
|
// prevents the ttyACM0 port blocking startup if the endpoint
|
|
// is not connected
|
|
BUF_ADVANCEHEAD(_writebuf, n);
|
|
return n;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
try reading n bytes, handling an unresponsive port
|
|
*/
|
|
int VRBRAINUARTDriver::_read_fd(uint8_t *buf, uint16_t n)
|
|
{
|
|
int ret = 0;
|
|
|
|
// the FIONREAD check is to cope with broken O_NONBLOCK behaviour
|
|
// in NuttX on ttyACM0
|
|
int nread = 0;
|
|
if (ioctl(_fd, FIONREAD, (unsigned long)&nread) == 0) {
|
|
if (nread > n) {
|
|
nread = n;
|
|
}
|
|
if (nread > 0) {
|
|
ret = ::read(_fd, buf, nread);
|
|
}
|
|
}
|
|
if (ret > 0) {
|
|
BUF_ADVANCETAIL(_readbuf, ret);
|
|
_total_read += ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
push any pending bytes to/from the serial port. This is called at
|
|
1kHz in the timer thread. Doing it this way reduces the system call
|
|
overhead in the main task enormously.
|
|
*/
|
|
void VRBRAINUARTDriver::_timer_tick(void)
|
|
{
|
|
uint16_t n;
|
|
|
|
if (!_initialised) return;
|
|
|
|
// don't try IO on a disconnected USB port
|
|
if (strcmp(_devpath, "/dev/ttyACM0") == 0 && !hal.gpio->usb_connected()) {
|
|
return;
|
|
}
|
|
|
|
_in_timer = true;
|
|
|
|
// write any pending bytes
|
|
uint16_t _tail;
|
|
n = BUF_AVAILABLE(_writebuf);
|
|
if (n > 0) {
|
|
uint16_t n1 = _writebuf_size - _writebuf_head;
|
|
perf_begin(_perf_uart);
|
|
if (n1 >= n) {
|
|
// do as a single write
|
|
_write_fd(&_writebuf[_writebuf_head], n);
|
|
} else {
|
|
// split into two writes
|
|
int ret = _write_fd(&_writebuf[_writebuf_head], n1);
|
|
if (ret == n1 && n > n1) {
|
|
_write_fd(&_writebuf[_writebuf_head], n - n1);
|
|
}
|
|
}
|
|
perf_end(_perf_uart);
|
|
}
|
|
|
|
// try to fill the read buffer
|
|
uint16_t _head;
|
|
n = BUF_SPACE(_readbuf);
|
|
if (n > 0) {
|
|
uint16_t n1 = _readbuf_size - _readbuf_tail;
|
|
perf_begin(_perf_uart);
|
|
if (n1 >= n) {
|
|
// one read will do
|
|
assert(_readbuf_tail+n <= _readbuf_size);
|
|
_read_fd(&_readbuf[_readbuf_tail], n);
|
|
} else {
|
|
assert(_readbuf_tail+n1 <= _readbuf_size);
|
|
int ret = _read_fd(&_readbuf[_readbuf_tail], n1);
|
|
if (ret == n1 && n > n1) {
|
|
assert(_readbuf_tail+(n-n1) <= _readbuf_size);
|
|
_read_fd(&_readbuf[_readbuf_tail], n - n1);
|
|
}
|
|
}
|
|
perf_end(_perf_uart);
|
|
}
|
|
|
|
_in_timer = false;
|
|
}
|
|
|
|
#endif // CONFIG_HAL_BOARD
|
|
|