ardupilot/libraries/AP_Motors/AP_MotorsHeli_Swash.cpp

194 lines
7.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli_Swash.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Swash::var_info[] = {
// @Param: ENABLE
// @DisplayName: Enable generic H3 swashplate settings
// @Description: Automatically set when H3 generic swash type is selected. Do not set manually.
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
AP_GROUPINFO_FLAGS("ENABLE", 1, AP_MotorsHeli_Swash, enable, 0, AP_PARAM_FLAG_ENABLE),
// @Param: SV1_POS
// @DisplayName: servo 1 position
// @Description: Azimuth position on swashplate for servo 1 with the front of the heli being 0 deg
// @Range: -180 180
// @Units: deg
// @User: Advanced
AP_GROUPINFO("SV1_POS", 2, AP_MotorsHeli_Swash, _servo1_pos, -60),
// @Param: SV2_POS
// @DisplayName: servo 2 position
// @Description: Azimuth position on swashplate for servo 2 with the front of the heli being 0 deg
// @Range: -180 180
// @Units: deg
// @User: Advanced
AP_GROUPINFO("SV2_POS", 3, AP_MotorsHeli_Swash, _servo2_pos, 60),
// @Param: SV3_POS
// @DisplayName: servo 3 position
// @Description: Azimuth position on swashplate for servo 3 with the front of the heli being 0 deg
// @Range: -180 180
// @Units: deg
// @User: Advanced
AP_GROUPINFO("SV3_POS", 4, AP_MotorsHeli_Swash, _servo3_pos, 180),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: Only for H3 swashplate. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -30 30
// @Units: deg
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 5, AP_MotorsHeli_Swash, _phase_angle, 0),
AP_GROUPEND
};
// CCPM Mixers - calculate mixing scale factors by swashplate type
void AP_MotorsHeli_Swash::calculate_roll_pitch_collective_factors()
{
if (_swash_type == SWASHPLATE_TYPE_H1) {
// CCPM mixing not used
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
} else if ((_swash_type == SWASHPLATE_TYPE_H4_90) || (_swash_type == SWASHPLATE_TYPE_H4_45)) {
// collective mixer for four-servo CCPM
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
_collectiveFactor[CH_4] = 1;
} else {
// collective mixer for three-servo CCPM
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}
if (_swash_type == SWASHPLATE_TYPE_H3) {
// Three-servo roll/pitch mixer for adjustable servo position
// can be any style swashplate, phase angle is adjustable
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle));
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle));
// defined swashplates, servo1 is always left, servo2 is right,
// servo3 is elevator
} else if (_swash_type == SWASHPLATE_TYPE_H3_140) { //
// Three-servo roll/pitch mixer for H3-140
// HR3-140 uses reversed servo and collective direction in heli setup
// 1:1 pure input style, phase angle not adjustable
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = -1;
_rollFactor[CH_3] = 0;
_pitchFactor[CH_1] = 1;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = -1;
} else if (_swash_type == SWASHPLATE_TYPE_H3_120) {
// three-servo roll/pitch mixer for H3-120
// HR3-120 uses reversed servo and collective direction in heli setup
// not a pure mixing swashplate, phase angle is adjustable
_rollFactor[CH_1] = 0.866025f;
_rollFactor[CH_2] = -0.866025f;
_rollFactor[CH_3] = 0;
_pitchFactor[CH_1] = 0.5f;
_pitchFactor[CH_2] = 0.5f;
_pitchFactor[CH_3] = -1;
} else if (_swash_type == SWASHPLATE_TYPE_H4_90) {
// four-servo roll/pitch mixer for H4-90
// 1:1 pure input style, phase angle not adjustable
// servos 3 & 7 are elevator
// can also be used for all versions of 90 deg three-servo swashplates
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = -1;
_rollFactor[CH_3] = 0;
_rollFactor[CH_4] = 0;
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 0;
_pitchFactor[CH_3] = -1;
_pitchFactor[CH_4] = 1;
} else if (_swash_type == SWASHPLATE_TYPE_H4_45) {
// four-servo roll/pitch mixer for H4-45
// 1:1 pure input style, phase angle not adjustable
// for 45 deg plates servos 1&2 are LF&RF, 3&7 are LR&RR.
_rollFactor[CH_1] = 0.707107f;
_rollFactor[CH_2] = -0.707107f;
_rollFactor[CH_3] = 0.707107f;
_rollFactor[CH_4] = -0.707107f;
_pitchFactor[CH_1] = 0.707107f;
_pitchFactor[CH_2] = 0.707107f;
_pitchFactor[CH_3] = -0.707f;
_pitchFactor[CH_4] = -0.707f;
} else {
// CCPM mixing not being used, so H1 straight outputs
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
}
}
// get_servo_out - calculates servo output
float AP_MotorsHeli_Swash::get_servo_out(int8_t ch_num, float pitch, float roll, float collective) const
{
// Collective control direction. Swash moves up for negative collective pitch, down for positive collective pitch
if (_collective_direction == COLLECTIVE_DIRECTION_REVERSED){
collective = 1 - collective;
}
float servo = ((_rollFactor[ch_num] * roll) + (_pitchFactor[ch_num] * pitch))*0.45f + _collectiveFactor[ch_num] * collective;
if (_swash_type == SWASHPLATE_TYPE_H1 && (ch_num == CH_1 || ch_num == CH_2)) {
servo += 0.5f;
}
// rescale from -1..1, so we can use the pwm calc that includes trim
servo = 2.0f * servo - 1.0f;
if (_make_servo_linear == 1) {
servo = get_linear_servo_output(servo);
}
return servo;
}
// set_linear_servo_out - sets swashplate servo output to be linear
float AP_MotorsHeli_Swash::get_linear_servo_output(float input) const
{
float ret;
input = constrain_float(input, -1.0f, 1.0f);
//servo output is normalized to 0.866 for a linear throw
ret = asin(0.766044f * input) * 1.145916;
return ret;
}