mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 23:48:31 -04:00
639 lines
22 KiB
Plaintext
639 lines
22 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
// update_navigation - checks for new GPS updates and invokes navigation routines
|
||
static void update_navigation()
|
||
{
|
||
static uint32_t nav_last_gps_update = 0; // the system time of the last gps update
|
||
static uint32_t nav_last_gps_time = 0; // the time according to the gps
|
||
bool pos_updated = false;
|
||
bool log_output = false;
|
||
|
||
// check for new gps data
|
||
if( g_gps->fix && g_gps->time != nav_last_gps_time ) {
|
||
|
||
// used to calculate speed in X and Y, iterms
|
||
// ------------------------------------------
|
||
dTnav = (float)(millis() - nav_last_gps_update)/ 1000.0;
|
||
nav_last_gps_update = millis();
|
||
|
||
// prevent runup from bad GPS
|
||
dTnav = min(dTnav, 1.0);
|
||
|
||
// save GPS time
|
||
nav_last_gps_time = g_gps->time;
|
||
|
||
// signal to run nav controllers
|
||
pos_updated = true;
|
||
|
||
// signal to create log entry
|
||
log_output = true;
|
||
}
|
||
|
||
#if INERTIAL_NAV_XY == ENABLED
|
||
// TO-DO: clean this up because inertial nav is overwriting the dTnav and pos_updated from above
|
||
// check for inertial nav updates
|
||
if( inertial_nav.position_ok() ) {
|
||
// 50hz
|
||
dTnav = 0.02; // To-Do: calculate the time from the mainloop or INS readings?
|
||
|
||
// signal to run nav controllers
|
||
pos_updated = true;
|
||
}
|
||
#endif
|
||
|
||
// calc various navigation values and run controllers if we've received a position update
|
||
if( pos_updated ) {
|
||
|
||
// calculate velocity
|
||
calc_velocity_and_position();
|
||
|
||
// calculate distance, angles to target
|
||
calc_distance_and_bearing();
|
||
|
||
// run navigation controllers
|
||
run_navigation_contollers();
|
||
|
||
// Rotate the nav_lon and nav_lat vectors based on Yaw
|
||
calc_nav_pitch_roll();
|
||
|
||
// update log
|
||
if (log_output && (g.log_bitmask & MASK_LOG_NTUN) && motors.armed()) {
|
||
Log_Write_Nav_Tuning();
|
||
}
|
||
}
|
||
|
||
// reduce nav outputs to zero if we have not received a gps update in 2 seconds
|
||
if( millis() - nav_last_gps_update > 2000 ) {
|
||
// after 12 reads we guess we may have lost GPS signal, stop navigating
|
||
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
|
||
auto_roll >>= 1;
|
||
auto_pitch >>= 1;
|
||
}
|
||
}
|
||
|
||
//*******************************************************************************************************
|
||
// calc_velocity_and_filtered_position - velocity in lon and lat directions calculated from GPS position
|
||
// and accelerometer data
|
||
// lon_speed expressed in cm/s. positive numbers mean moving east
|
||
// lat_speed expressed in cm/s. positive numbers when moving north
|
||
// Note: we use gps locations directly to calculate velocity instead of asking gps for velocity because
|
||
// this is more accurate below 1.5m/s
|
||
// Note: even though the positions are projected using a lead filter, the velocities are calculated
|
||
// from the unaltered gps locations. We do not want noise from our lead filter affecting velocity
|
||
//*******************************************************************************************************
|
||
static void calc_velocity_and_position(){
|
||
static int32_t last_gps_longitude = 0;
|
||
static int32_t last_gps_latitude = 0;
|
||
|
||
// initialise last_longitude and last_latitude
|
||
if( last_gps_longitude == 0 && last_gps_latitude == 0 ) {
|
||
last_gps_longitude = g_gps->longitude;
|
||
last_gps_latitude = g_gps->latitude;
|
||
}
|
||
|
||
// this speed is ~ in cm because we are using 10^7 numbers from GPS
|
||
float tmp = 1.0/dTnav;
|
||
|
||
#if INERTIAL_NAV_XY == ENABLED
|
||
if( inertial_nav.position_ok() ) {
|
||
// pull velocity from interial nav library
|
||
lon_speed = inertial_nav.get_longitude_velocity();
|
||
lat_speed = inertial_nav.get_latitude_velocity();
|
||
|
||
// pull position from interial nav library
|
||
current_loc.lng = inertial_nav.get_longitude();
|
||
current_loc.lat = inertial_nav.get_latitude();
|
||
}else{
|
||
// calculate velocity
|
||
lon_speed = (float)(g_gps->longitude - last_gps_longitude) * scaleLongDown * tmp;
|
||
lat_speed = (float)(g_gps->latitude - last_gps_latitude) * tmp;
|
||
|
||
// calculate position from gps + expected travel during gps_lag
|
||
current_loc.lng = xLeadFilter.get_position(g_gps->longitude, lon_speed, g_gps->get_lag());
|
||
current_loc.lat = yLeadFilter.get_position(g_gps->latitude, lat_speed, g_gps->get_lag());
|
||
}
|
||
#else
|
||
// calculate velocity
|
||
lon_speed = (float)(g_gps->longitude - last_gps_longitude) * scaleLongDown * tmp;
|
||
lat_speed = (float)(g_gps->latitude - last_gps_latitude) * tmp;
|
||
|
||
// calculate position from gps + expected travel during gps_lag
|
||
current_loc.lng = xLeadFilter.get_position(g_gps->longitude, lon_speed, g_gps->get_lag());
|
||
current_loc.lat = yLeadFilter.get_position(g_gps->latitude, lat_speed, g_gps->get_lag());
|
||
#endif
|
||
|
||
// store gps lat and lon values for next iteration
|
||
last_gps_longitude = g_gps->longitude;
|
||
last_gps_latitude = g_gps->latitude;
|
||
}
|
||
|
||
//****************************************************************
|
||
// Function that will calculate the desired direction to fly and distance
|
||
//****************************************************************
|
||
static void calc_distance_and_bearing()
|
||
{
|
||
// waypoint distance from plane in cm
|
||
// ---------------------------------------
|
||
wp_distance = get_distance_cm(¤t_loc, &next_WP);
|
||
home_distance = get_distance_cm(¤t_loc, &home);
|
||
|
||
// wp_bearing is bearing to next waypoint
|
||
// --------------------------------------------
|
||
wp_bearing = get_bearing_cd(¤t_loc, &next_WP);
|
||
home_bearing = get_bearing_cd(¤t_loc, &home);
|
||
|
||
// bearing to target (used when yaw_mode = YAW_LOOK_AT_LOCATION)
|
||
yaw_look_at_WP_bearing = get_bearing_cd(¤t_loc, &yaw_look_at_WP);
|
||
}
|
||
|
||
static void calc_location_error(struct Location *next_loc)
|
||
{
|
||
/*
|
||
* Becuase we are using lat and lon to do our distance errors here's a quick chart:
|
||
* 100 = 1m
|
||
* 1000 = 11m = 36 feet
|
||
* 1800 = 19.80m = 60 feet
|
||
* 3000 = 33m
|
||
* 10000 = 111m
|
||
*/
|
||
|
||
// X Error
|
||
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East
|
||
|
||
// Y Error
|
||
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
|
||
}
|
||
|
||
// called after a GPS read
|
||
static void run_navigation_contollers()
|
||
{
|
||
// wp_distance is in CM
|
||
// --------------------
|
||
switch(control_mode) {
|
||
case AUTO:
|
||
// note: wp_control is handled by commands_logic
|
||
verify_commands();
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case GUIDED:
|
||
wp_control = WP_MODE;
|
||
// check if we are close to point > loiter
|
||
wp_verify_byte = 0;
|
||
verify_nav_wp();
|
||
|
||
if (wp_control != WP_MODE) {
|
||
set_mode(LOITER);
|
||
}
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case RTL:
|
||
// execute the RTL state machine
|
||
verify_RTL();
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
// switch passthrough to LOITER
|
||
case LOITER:
|
||
case POSITION:
|
||
// This feature allows us to reposition the quad when the user lets
|
||
// go of the sticks
|
||
|
||
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500) {
|
||
if(wp_distance > 500){
|
||
ap.loiter_override = true;
|
||
}
|
||
}
|
||
|
||
// Allow the user to take control temporarily,
|
||
if(ap.loiter_override) {
|
||
// this sets the copter to not try and nav while we control it
|
||
wp_control = NO_NAV_MODE;
|
||
|
||
// reset LOITER to current position
|
||
next_WP.lat = current_loc.lat;
|
||
next_WP.lng = current_loc.lng;
|
||
|
||
if(g.rc_2.control_in == 0 && g.rc_1.control_in == 0) {
|
||
wp_control = LOITER_MODE;
|
||
ap.loiter_override = false;
|
||
}
|
||
}else{
|
||
wp_control = LOITER_MODE;
|
||
}
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case LAND:
|
||
verify_land();
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case CIRCLE:
|
||
wp_control = CIRCLE_MODE;
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case STABILIZE:
|
||
case TOY_A:
|
||
case TOY_M:
|
||
wp_control = NO_NAV_MODE;
|
||
update_nav_wp();
|
||
break;
|
||
}
|
||
|
||
// are we in SIMPLE mode?
|
||
if(ap.simple_mode && g.super_simple) {
|
||
// get distance to home
|
||
if(home_distance > SUPER_SIMPLE_RADIUS) { // 10m from home
|
||
// we reset the angular offset to be a vector from home to the quad
|
||
initial_simple_bearing = wrap_360(home_bearing+18000);
|
||
//cliSerial->printf("ISB: %d\n", initial_simple_bearing);
|
||
}
|
||
}
|
||
}
|
||
|
||
// update_nav_wp - high level calculation of nav_lat and nav_lon based on wp_control
|
||
// called after gps read from run_navigation_controller
|
||
static void update_nav_wp()
|
||
{
|
||
int16_t loiter_delta;
|
||
int16_t speed;
|
||
|
||
switch( wp_control ) {
|
||
case LOITER_MODE:
|
||
// calc error to target
|
||
calc_location_error(&next_WP);
|
||
|
||
// use error as the desired rate towards the target
|
||
calc_loiter(long_error, lat_error);
|
||
break;
|
||
|
||
case CIRCLE_MODE:
|
||
// check if we have missed the WP
|
||
loiter_delta = (wp_bearing - old_wp_bearing)/100;
|
||
|
||
// reset the old value
|
||
old_wp_bearing = wp_bearing;
|
||
|
||
// wrap values
|
||
if (loiter_delta > 180) loiter_delta -= 360;
|
||
if (loiter_delta < -180) loiter_delta += 360;
|
||
|
||
// sum the angle around the WP
|
||
loiter_sum += loiter_delta;
|
||
|
||
circle_angle += (circle_rate * dTnav);
|
||
//1<> = 0.0174532925 radians
|
||
|
||
// wrap
|
||
if (circle_angle > 6.28318531)
|
||
circle_angle -= 6.28318531;
|
||
|
||
next_WP.lng = circle_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp);
|
||
next_WP.lat = circle_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle));
|
||
|
||
// use error as the desired rate towards the target
|
||
// nav_lon, nav_lat is calculated
|
||
|
||
if(wp_distance > 400) {
|
||
calc_nav_rate(get_desired_speed(g.waypoint_speed_max));
|
||
}else{
|
||
// calc the lat and long error to the target
|
||
calc_location_error(&next_WP);
|
||
|
||
calc_loiter(long_error, lat_error);
|
||
}
|
||
break;
|
||
|
||
case WP_MODE:
|
||
// calc error to target
|
||
calc_location_error(&next_WP);
|
||
|
||
speed = get_desired_speed(g.waypoint_speed_max);
|
||
// use error as the desired rate towards the target
|
||
calc_nav_rate(speed);
|
||
break;
|
||
|
||
case NO_NAV_MODE:
|
||
// clear out our nav so we can do things like land straight down
|
||
// or change Loiter position
|
||
|
||
// We bring copy over our Iterms for wind control, but we don't navigate
|
||
nav_lon = g.pid_loiter_rate_lon.get_integrator();
|
||
nav_lat = g.pid_loiter_rate_lon.get_integrator();
|
||
|
||
nav_lon = constrain(nav_lon, -2000, 2000); // 20<32>
|
||
nav_lat = constrain(nav_lat, -2000, 2000); // 20<32>
|
||
break;
|
||
}
|
||
}
|
||
|
||
static bool check_missed_wp()
|
||
{
|
||
int32_t temp;
|
||
temp = wp_bearing - original_wp_bearing;
|
||
temp = wrap_180(temp);
|
||
return (labs(temp) > 9000); // we passed the waypoint by 100 degrees
|
||
}
|
||
|
||
#define NAV_ERR_MAX 600
|
||
#define NAV_RATE_ERR_MAX 250
|
||
static void calc_loiter(int16_t x_error, int16_t y_error)
|
||
{
|
||
int32_t p,i,d; // used to capture pid values for logging
|
||
int32_t output;
|
||
int32_t x_target_speed, y_target_speed;
|
||
|
||
// East / West
|
||
x_target_speed = g.pi_loiter_lon.get_p(x_error); // calculate desired speed from lon error
|
||
|
||
#if LOGGING_ENABLED == ENABLED
|
||
// log output if PID logging is on and we are tuning the yaw
|
||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
|
||
Log_Write_PID(CH6_LOITER_KP, x_error, x_target_speed, 0, 0, x_target_speed, tuning_value);
|
||
}
|
||
#endif
|
||
|
||
// calculate rate error
|
||
x_rate_error = x_target_speed - lon_speed; // calc the speed error
|
||
|
||
p = g.pid_loiter_rate_lon.get_p(x_rate_error);
|
||
i = g.pid_loiter_rate_lon.get_i(x_rate_error + x_error, dTnav);
|
||
d = g.pid_loiter_rate_lon.get_d(x_error, dTnav);
|
||
d = constrain(d, -2000, 2000);
|
||
|
||
// get rid of noise
|
||
if(abs(lon_speed) < 50) {
|
||
d = 0;
|
||
}
|
||
|
||
output = p + i + d;
|
||
nav_lon = constrain(output, -32000, 32000); // constraint to remove chance of overflow when adding int32_t to int16_t
|
||
|
||
#if LOGGING_ENABLED == ENABLED
|
||
// log output if PID logging is on and we are tuning the yaw
|
||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
|
||
Log_Write_PID(CH6_LOITER_RATE_KP, x_rate_error, p, i, d, nav_lon, tuning_value);
|
||
}
|
||
#endif
|
||
|
||
// North / South
|
||
y_target_speed = g.pi_loiter_lat.get_p(y_error); // calculate desired speed from lat error
|
||
|
||
#if LOGGING_ENABLED == ENABLED
|
||
// log output if PID logging is on and we are tuning the yaw
|
||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) {
|
||
Log_Write_PID(CH6_LOITER_KP+100, y_error, y_target_speed, 0, 0, y_target_speed, tuning_value);
|
||
}
|
||
#endif
|
||
|
||
// calculate rate error
|
||
y_rate_error = y_target_speed - lat_speed; // calc the speed error
|
||
|
||
p = g.pid_loiter_rate_lat.get_p(y_rate_error);
|
||
i = g.pid_loiter_rate_lat.get_i(y_rate_error + y_error, dTnav);
|
||
d = g.pid_loiter_rate_lat.get_d(y_error, dTnav);
|
||
d = constrain(d, -2000, 2000);
|
||
|
||
// get rid of noise
|
||
if(abs(lat_speed) < 50) {
|
||
d = 0;
|
||
}
|
||
|
||
output = p + i + d;
|
||
nav_lat = constrain(output, -32000, 32000); // constraint to remove chance of overflow when adding int32_t to int16_t
|
||
|
||
#if LOGGING_ENABLED == ENABLED
|
||
// log output if PID logging is on and we are tuning the yaw
|
||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) {
|
||
Log_Write_PID(CH6_LOITER_RATE_KP+100, y_rate_error, p, i, d, nav_lat, tuning_value);
|
||
}
|
||
#endif
|
||
|
||
// copy over I term to Nav_Rate
|
||
g.pid_nav_lon.set_integrator(g.pid_loiter_rate_lon.get_integrator());
|
||
g.pid_nav_lat.set_integrator(g.pid_loiter_rate_lat.get_integrator());
|
||
}
|
||
|
||
static void calc_nav_rate(int16_t max_speed)
|
||
{
|
||
float temp, temp_x, temp_y;
|
||
|
||
// push us towards the original track
|
||
update_crosstrack();
|
||
|
||
int16_t cross_speed = crosstrack_error * -g.crosstrack_gain; // scale down crosstrack_error in cm
|
||
cross_speed = constrain(cross_speed, -150, 150);
|
||
|
||
// rotate by 90 to deal with trig functions
|
||
temp = (9000l - wp_bearing) * RADX100;
|
||
temp_x = cos(temp);
|
||
temp_y = sin(temp);
|
||
|
||
// rotate desired spped vector:
|
||
int32_t x_target_speed = max_speed * temp_x - cross_speed * temp_y;
|
||
int32_t y_target_speed = cross_speed * temp_x + max_speed * temp_y;
|
||
|
||
// East / West
|
||
// calculate rate error
|
||
x_rate_error = x_target_speed - lon_speed;
|
||
|
||
x_rate_error = constrain(x_rate_error, -500, 500);
|
||
nav_lon = g.pid_nav_lon.get_pid(x_rate_error, dTnav);
|
||
int32_t tilt = (x_target_speed * x_target_speed * (int32_t)g.tilt_comp) / 10000;
|
||
|
||
if(x_target_speed < 0) tilt = -tilt;
|
||
nav_lon += tilt;
|
||
|
||
|
||
// North / South
|
||
// calculate rate error
|
||
y_rate_error = y_target_speed - lat_speed;
|
||
|
||
y_rate_error = constrain(y_rate_error, -500, 500); // added a rate error limit to keep pitching down to a minimum
|
||
nav_lat = g.pid_nav_lat.get_pid(y_rate_error, dTnav);
|
||
tilt = (y_target_speed * y_target_speed * (int32_t)g.tilt_comp) / 10000;
|
||
|
||
if(y_target_speed < 0) tilt = -tilt;
|
||
nav_lat += tilt;
|
||
|
||
// copy over I term to Loiter_Rate
|
||
g.pid_loiter_rate_lon.set_integrator(g.pid_nav_lon.get_integrator());
|
||
g.pid_loiter_rate_lat.set_integrator(g.pid_nav_lat.get_integrator());
|
||
}
|
||
|
||
|
||
// this calculation rotates our World frame of reference to the copter's frame of reference
|
||
// We use the DCM's matrix to precalculate these trig values at 50hz
|
||
static void calc_nav_pitch_roll()
|
||
{
|
||
//cliSerial->printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y);
|
||
// rotate the vector
|
||
auto_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x;
|
||
auto_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y;
|
||
|
||
// flip pitch because forward is negative
|
||
auto_pitch = -auto_pitch;
|
||
}
|
||
|
||
static int16_t get_desired_speed(int16_t max_speed)
|
||
{
|
||
/*
|
||
Based on Equation by Bill Premerlani & Robert Lefebvre
|
||
(sq(V2)-sq(V1))/2 = A(X2-X1)
|
||
derives to:
|
||
V1 = sqrt(sq(V2) - 2*A*(X2-X1))
|
||
*/
|
||
|
||
if(ap.fast_corner) {
|
||
// don't slow down
|
||
}else{
|
||
if(wp_distance < 20000){ // limit the size of numbers we're dealing with to avoid overflow
|
||
// go slower
|
||
int32_t temp = 2 * 100 * (int32_t)(wp_distance - g.waypoint_radius * 100);
|
||
int32_t s_min = WAYPOINT_SPEED_MIN;
|
||
temp += s_min * s_min;
|
||
max_speed = sqrt((float)temp);
|
||
max_speed = min(max_speed, g.waypoint_speed_max);
|
||
}
|
||
}
|
||
|
||
max_speed = min(max_speed, max_speed_old + (100 * dTnav));// limit going faster
|
||
max_speed = max(max_speed, WAYPOINT_SPEED_MIN); // don't go too slow
|
||
max_speed_old = max_speed;
|
||
return max_speed;
|
||
}
|
||
|
||
static void reset_desired_speed()
|
||
{
|
||
max_speed_old = 0;
|
||
}
|
||
|
||
static void update_crosstrack(void)
|
||
{
|
||
// Crosstrack Error
|
||
// ----------------
|
||
if (wp_distance >= (g.crosstrack_min_distance * 100) &&
|
||
abs(wrap_180(wp_bearing - original_wp_bearing)) < 4500) {
|
||
|
||
float temp = (wp_bearing - original_wp_bearing) * RADX100;
|
||
crosstrack_error = sin(temp) * wp_distance; // Meters we are off track line
|
||
}else{
|
||
// fade out crosstrack
|
||
crosstrack_error >>= 1;
|
||
}
|
||
}
|
||
|
||
static int32_t get_altitude_error()
|
||
{
|
||
// Next_WP alt is our target alt
|
||
// It changes based on climb rate
|
||
// until it reaches the target_altitude
|
||
|
||
#if INERTIAL_NAV_Z == ENABLED
|
||
// use inertial nav for altitude error
|
||
return next_WP.alt - inertial_nav._position.z;
|
||
#else
|
||
return next_WP.alt - current_loc.alt;
|
||
#endif
|
||
}
|
||
|
||
static void clear_new_altitude()
|
||
{
|
||
set_alt_change(REACHED_ALT);
|
||
}
|
||
|
||
static void force_new_altitude(int32_t new_alt)
|
||
{
|
||
next_WP.alt = new_alt;
|
||
set_alt_change(REACHED_ALT);
|
||
}
|
||
|
||
static void set_new_altitude(int32_t new_alt)
|
||
{
|
||
next_WP.alt = new_alt;
|
||
|
||
if(next_WP.alt > (current_loc.alt + 80)) {
|
||
// we are below, going up
|
||
set_alt_change(ASCENDING);
|
||
|
||
}else if(next_WP.alt < (current_loc.alt - 80)) {
|
||
// we are above, going down
|
||
set_alt_change(DESCENDING);
|
||
|
||
}else{
|
||
// No Change
|
||
set_alt_change(REACHED_ALT);
|
||
}
|
||
}
|
||
|
||
static void verify_altitude()
|
||
{
|
||
if(alt_change_flag == ASCENDING) {
|
||
// we are below, going up
|
||
if(current_loc.alt > next_WP.alt - 50) {
|
||
set_alt_change(REACHED_ALT);
|
||
}
|
||
}else if (alt_change_flag == DESCENDING) {
|
||
// we are above, going down
|
||
if(current_loc.alt <= next_WP.alt + 50){
|
||
set_alt_change(REACHED_ALT);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Keeps old data out of our calculation / logs
|
||
static void reset_nav_params(void)
|
||
{
|
||
// always start Circle mode at same angle
|
||
circle_angle = 0;
|
||
|
||
// We must be heading to a new WP, so XTrack must be 0
|
||
crosstrack_error = 0;
|
||
|
||
// Will be set by new command
|
||
wp_bearing = 0;
|
||
|
||
// Will be set by new command
|
||
wp_distance = 0;
|
||
|
||
// Will be set by new command, used by loiter
|
||
long_error = 0;
|
||
lat_error = 0;
|
||
nav_lon = 0;
|
||
nav_lat = 0;
|
||
nav_roll = 0;
|
||
nav_pitch = 0;
|
||
auto_roll = 0;
|
||
auto_pitch = 0;
|
||
}
|
||
|
||
static int32_t wrap_360(int32_t error)
|
||
{
|
||
if (error > 36000) error -= 36000;
|
||
if (error < 0) error += 36000;
|
||
return error;
|
||
}
|
||
|
||
static int32_t wrap_180(int32_t error)
|
||
{
|
||
if (error > 18000) error -= 36000;
|
||
if (error < -18000) error += 36000;
|
||
return error;
|
||
}
|
||
|
||
// get_yaw_slew - reduces rate of change of yaw to a maximum
|
||
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out
|
||
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec)
|
||
{
|
||
return wrap_360(current_yaw + constrain(wrap_180(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec));
|
||
} |