ardupilot/APMrover2/sensors.cpp
2019-03-16 13:26:08 +09:00

253 lines
8.5 KiB
C++

#include "Rover.h"
#include <AP_RangeFinder/RangeFinder_Backend.h>
#include <AP_VisualOdom/AP_VisualOdom.h>
// initialise compass
void Rover::init_compass()
{
if (!g.compass_enabled) {
return;
}
compass.init();
if (!compass.read()) {
hal.console->printf("Compass initialisation failed!\n");
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
}
/*
initialise compass's location used for declination
*/
void Rover::init_compass_location(void)
{
// update initial location used for declination
if (!compass_init_location) {
Location loc;
if (ahrs.get_position(loc)) {
compass.set_initial_location(loc.lat, loc.lng);
compass_init_location = true;
}
}
}
// check for new compass data - 10Hz
void Rover::update_compass(void)
{
if (g.compass_enabled && compass.read()) {
ahrs.set_compass(&compass);
// update offsets
if (should_log(MASK_LOG_COMPASS)) {
logger.Write_Compass();
}
}
}
// Calibrate compass
void Rover::compass_cal_update() {
if (!hal.util->get_soft_armed()) {
compass.compass_cal_update();
}
}
// Save compass offsets
void Rover::compass_save() {
if (g.compass_enabled &&
compass.get_learn_type() >= Compass::LEARN_INTERNAL &&
!arming.is_armed()) {
compass.save_offsets();
}
}
// init beacons used for non-gps position estimates
void Rover::init_beacon()
{
g2.beacon.init();
}
// init visual odometry sensor
void Rover::init_visual_odom()
{
g2.visual_odom.init();
}
// update wheel encoders
void Rover::update_wheel_encoder()
{
// exit immediately if not enabled
if (g2.wheel_encoder.num_sensors() == 0) {
return;
}
// update encoders
g2.wheel_encoder.update();
// initialise on first iteration
const uint32_t now = AP_HAL::millis();
if (wheel_encoder_last_ekf_update_ms == 0) {
wheel_encoder_last_ekf_update_ms = now;
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i);
wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i);
}
return;
}
// calculate delta angle and delta time and send to EKF
// use time of last ping from wheel encoder
// send delta time (time between this wheel encoder time and previous wheel encoder time)
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time)
// use system clock of last update instead of time of last ping
const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f;
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
// calculate angular change (in radians)
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i);
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i];
wheel_encoder_last_angle_rad[i] = curr_angle_rad;
// save cumulative distances at current time (in meters)
wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i);
// calculate delta time
float delta_time;
const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i);
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i];
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf
// check for old or insane sensor update times
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) {
delta_time = system_dt;
wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms;
} else {
delta_time = sensor_diff_ms / 1000.0f;
wheel_encoder_last_update_ms[i] = latest_sensor_update_ms;
}
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
* delTime is the time interval for the measurement of delAng (sec)
* timeStamp_ms is the time when the rotation was last measured (msec)
* posOffset is the XYZ body frame position of the wheel hub (m)
*/
EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_pos_offset(i), g2.wheel_encoder.get_wheel_radius(i));
}
// record system time update for next iteration
wheel_encoder_last_ekf_update_ms = now;
}
// Accel calibration
void Rover::accel_cal_update() {
if (hal.util->get_soft_armed()) {
return;
}
ins.acal_update();
// check if new trim values, and set them float trim_roll, trim_pitch;
float trim_roll, trim_pitch;
if (ins.get_new_trim(trim_roll, trim_pitch)) {
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
}
// read the rangefinders
void Rover::read_rangefinders(void)
{
rangefinder.update();
AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0);
AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1);
if (s0 == nullptr || s0->status() == RangeFinder::RangeFinder_NotConnected) {
// this makes it possible to disable rangefinder at runtime
return;
}
if (s1 != nullptr && s1->has_data()) {
// we have two rangefinders
obstacle.rangefinder1_distance_cm = s0->distance_cm();
obstacle.rangefinder2_distance_cm = s1->distance_cm();
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm) &&
obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(obstacle.rangefinder2_distance_cm)) {
// we have an object on the left
if (obstacle.detected_count < 127) {
obstacle.detected_count++;
}
if (obstacle.detected_count == g.rangefinder_debounce) {
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder1 obstacle %u cm",
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm));
}
obstacle.detected_time_ms = AP_HAL::millis();
obstacle.turn_angle = g.rangefinder_turn_angle;
} else if (obstacle.rangefinder2_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) {
// we have an object on the right
if (obstacle.detected_count < 127) {
obstacle.detected_count++;
}
if (obstacle.detected_count == g.rangefinder_debounce) {
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder2 obstacle %u cm",
static_cast<uint32_t>(obstacle.rangefinder2_distance_cm));
}
obstacle.detected_time_ms = AP_HAL::millis();
obstacle.turn_angle = -g.rangefinder_turn_angle;
}
} else {
// we have a single rangefinder
obstacle.rangefinder1_distance_cm = s0->distance_cm();
obstacle.rangefinder2_distance_cm = 0;
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) {
// obstacle detected in front
if (obstacle.detected_count < 127) {
obstacle.detected_count++;
}
if (obstacle.detected_count == g.rangefinder_debounce) {
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder obstacle %u cm",
static_cast<uint32_t>(obstacle.rangefinder1_distance_cm));
}
obstacle.detected_time_ms = AP_HAL::millis();
obstacle.turn_angle = g.rangefinder_turn_angle;
}
}
Log_Write_Rangefinder();
Log_Write_Depth();
// no object detected - reset after the turn time
if (obstacle.detected_count >= g.rangefinder_debounce &&
AP_HAL::millis() > obstacle.detected_time_ms + g.rangefinder_turn_time*1000) {
gcs().send_text(MAV_SEVERITY_INFO, "Obstacle passed");
obstacle.detected_count = 0;
obstacle.turn_angle = 0;
}
}
// initialise proximity sensor
void Rover::init_proximity(void)
{
g2.proximity.init();
g2.proximity.set_rangefinder(&rangefinder);
}
/*
ask airspeed sensor for a new value, duplicated from plane
*/
void Rover::read_airspeed(void)
{
g2.airspeed.update(should_log(MASK_LOG_IMU));
}
/*
update RPM sensors
*/
void Rover::rpm_update(void)
{
rpm_sensor.update();
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
if (should_log(MASK_LOG_RC)) {
logger.Write_RPM(rpm_sensor);
}
}
}