ardupilot/libraries/AP_NavEKF3/AP_NavEKF3_Measurements.cpp
Andrew Tridgell 8a4b0f858a AP_NavEKF3: reset body mag variances at key points
we need to reset the body mag variances if we change sensors or if we
are starting 3D fusion. When not doing 3D fusion we zero the
variances, so they must be initialised again when we restart
fusion. This fixes a bug in handling the variances on a 2nd flight
2020-09-20 09:25:57 +10:00

1368 lines
57 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AP_NavEKF3_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_RangeFinder/AP_RangeFinder_Backend.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_Logger/AP_Logger.h>
extern const AP_HAL::HAL& hal;
/********************************************************
* OPT FLOW AND RANGE FINDER *
********************************************************/
// Read the range finder and take new measurements if available
// Apply a median filter
void NavEKF3_core::readRangeFinder(void)
{
uint8_t midIndex;
uint8_t maxIndex;
uint8_t minIndex;
// get theoretical correct range when the vehicle is on the ground
// don't allow range to go below 5cm because this can cause problems with optical flow processing
const RangeFinder *_rng = AP::rangefinder();
if (_rng == nullptr) {
return;
}
rngOnGnd = MAX(_rng->ground_clearance_cm_orient(ROTATION_PITCH_270) * 0.01f, 0.05f);
// limit update rate to maximum allowed by data buffers
if ((imuSampleTime_ms - lastRngMeasTime_ms) > frontend->sensorIntervalMin_ms) {
// reset the timer used to control the measurement rate
lastRngMeasTime_ms = imuSampleTime_ms;
// store samples and sample time into a ring buffer if valid
// use data from two range finders if available
for (uint8_t sensorIndex = 0; sensorIndex <= 1; sensorIndex++) {
AP_RangeFinder_Backend *sensor = _rng->get_backend(sensorIndex);
if (sensor == nullptr) {
continue;
}
if ((sensor->orientation() == ROTATION_PITCH_270) && (sensor->status() == RangeFinder::Status::Good)) {
rngMeasIndex[sensorIndex] ++;
if (rngMeasIndex[sensorIndex] > 2) {
rngMeasIndex[sensorIndex] = 0;
}
storedRngMeasTime_ms[sensorIndex][rngMeasIndex[sensorIndex]] = imuSampleTime_ms - 25;
storedRngMeas[sensorIndex][rngMeasIndex[sensorIndex]] = sensor->distance_cm() * 0.01f;
} else {
continue;
}
// check for three fresh samples
bool sampleFresh[2][3] = {};
for (uint8_t index = 0; index <= 2; index++) {
sampleFresh[sensorIndex][index] = (imuSampleTime_ms - storedRngMeasTime_ms[sensorIndex][index]) < 500;
}
// find the median value if we have three fresh samples
if (sampleFresh[sensorIndex][0] && sampleFresh[sensorIndex][1] && sampleFresh[sensorIndex][2]) {
if (storedRngMeas[sensorIndex][0] > storedRngMeas[sensorIndex][1]) {
minIndex = 1;
maxIndex = 0;
} else {
minIndex = 0;
maxIndex = 1;
}
if (storedRngMeas[sensorIndex][2] > storedRngMeas[sensorIndex][maxIndex]) {
midIndex = maxIndex;
} else if (storedRngMeas[sensorIndex][2] < storedRngMeas[sensorIndex][minIndex]) {
midIndex = minIndex;
} else {
midIndex = 2;
}
// don't allow time to go backwards
if (storedRngMeasTime_ms[sensorIndex][midIndex] > rangeDataNew.time_ms) {
rangeDataNew.time_ms = storedRngMeasTime_ms[sensorIndex][midIndex];
}
// limit the measured range to be no less than the on-ground range
rangeDataNew.rng = MAX(storedRngMeas[sensorIndex][midIndex],rngOnGnd);
// get position in body frame for the current sensor
rangeDataNew.sensor_idx = sensorIndex;
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
storedRange.push(rangeDataNew);
// indicate we have updated the measurement
rngValidMeaTime_ms = imuSampleTime_ms;
} else if (!takeOffDetected && ((imuSampleTime_ms - rngValidMeaTime_ms) > 200)) {
// before takeoff we assume on-ground range value if there is no data
rangeDataNew.time_ms = imuSampleTime_ms;
rangeDataNew.rng = rngOnGnd;
rangeDataNew.time_ms = imuSampleTime_ms;
// don't allow time to go backwards
if (imuSampleTime_ms > rangeDataNew.time_ms) {
rangeDataNew.time_ms = imuSampleTime_ms;
}
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
storedRange.push(rangeDataNew);
// indicate we have updated the measurement
rngValidMeaTime_ms = imuSampleTime_ms;
}
}
}
}
void NavEKF3_core::writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, uint16_t delay_ms, const Vector3f &posOffset)
{
// protect against NaN
if (isnan(quality) || delPos.is_nan() || delAng.is_nan() || isnan(delTime) || posOffset.is_nan()) {
return;
}
// limit update rate to maximum allowed by sensor buffers and fusion process
// don't try to write to buffer until the filter has been initialised
if (((timeStamp_ms - bodyOdmMeasTime_ms) < frontend->sensorIntervalMin_ms) || (delTime < dtEkfAvg) || !statesInitialised) {
return;
}
// subtract delay from timestamp
timeStamp_ms -= delay_ms;
bodyOdmDataNew.body_offset = &posOffset;
bodyOdmDataNew.vel = delPos * (1.0f/delTime);
bodyOdmDataNew.time_ms = timeStamp_ms;
bodyOdmDataNew.angRate = delAng * (1.0f/delTime);
bodyOdmMeasTime_ms = timeStamp_ms;
// simple model of accuracy
// TODO move this calculation outside of EKF into the sensor driver
bodyOdmDataNew.velErr = frontend->_visOdmVelErrMin + (frontend->_visOdmVelErrMax - frontend->_visOdmVelErrMin) * (1.0f - 0.01f * quality);
storedBodyOdm.push(bodyOdmDataNew);
}
void NavEKF3_core::writeWheelOdom(float delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset, float radius)
{
// This is a simple hack to get wheel encoder data into the EKF and verify the interface sign conventions and units
// It uses the exisiting body frame velocity fusion.
// TODO implement a dedicated wheel odometry observation model
// rate limiting to 50hz should be done by the caller
// limit update rate to maximum allowed by sensor buffers and fusion process
// don't try to write to buffer until the filter has been initialised
if ((delTime < dtEkfAvg) || !statesInitialised) {
return;
}
wheel_odm_elements wheelOdmDataNew = {};
wheelOdmDataNew.hub_offset = &posOffset;
wheelOdmDataNew.delAng = delAng;
wheelOdmDataNew.radius = radius;
wheelOdmDataNew.delTime = delTime;
// because we are currently converting to an equivalent velocity measurement before fusing
// the measurement time is moved back to the middle of the sampling period
wheelOdmDataNew.time_ms = timeStamp_ms - (uint32_t)(500.0f * delTime);
storedWheelOdm.push(wheelOdmDataNew);
}
// write the raw optical flow measurements
// this needs to be called externally.
void NavEKF3_core::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset)
{
// limit update rate to maximum allowed by sensor buffers
if ((imuSampleTime_ms - flowMeaTime_ms) < frontend->sensorIntervalMin_ms) {
return;
}
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
// A positive X rate is produced by a positive sensor rotation about the X axis
// A positive Y rate is produced by a positive sensor rotation about the Y axis
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
flowMeaTime_ms = imuSampleTime_ms;
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
// reset the accumulated body delta angle and time
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
if (delTimeOF > 0.01f) {
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
delAngBodyOF.zero();
delTimeOF = 0.0f;
}
// by definition if this function is called, then flow measurements have been provided so we
// need to run the optical flow takeoff detection
detectOptFlowTakeoff();
// calculate rotation matrices at mid sample time for flow observations
stateStruct.quat.rotation_matrix(Tbn_flow);
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
// correct flow sensor body rates for bias and write
ofDataNew.bodyRadXYZ.x = rawGyroRates.x - flowGyroBias.x;
ofDataNew.bodyRadXYZ.y = rawGyroRates.y - flowGyroBias.y;
// the sensor interface doesn't provide a z axis rate so use the rate from the nav sensor instead
if (delTimeOF > 0.001f) {
// first preference is to use the rate averaged over the same sampling period as the flow sensor
ofDataNew.bodyRadXYZ.z = delAngBodyOF.z / delTimeOF;
} else if (imuDataNew.delAngDT > 0.001f){
// second preference is to use most recent IMU data
ofDataNew.bodyRadXYZ.z = imuDataNew.delAng.z / imuDataNew.delAngDT;
} else {
// third preference is use zero
ofDataNew.bodyRadXYZ.z = 0.0f;
}
// write uncorrected flow rate measurements
// note correction for different axis and sign conventions used by the px4flow sensor
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
// write the flow sensor position in body frame
ofDataNew.body_offset = &posOffset;
// write flow rate measurements corrected for body rates
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + ofDataNew.bodyRadXYZ.x;
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + ofDataNew.bodyRadXYZ.y;
// record time last observation was received so we can detect loss of data elsewhere
flowValidMeaTime_ms = imuSampleTime_ms;
// estimate sample time of the measurement
ofDataNew.time_ms = imuSampleTime_ms - frontend->_flowDelay_ms - frontend->flowTimeDeltaAvg_ms/2;
// Correct for the average intersampling delay due to the filter updaterate
ofDataNew.time_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
ofDataNew.time_ms = MAX(ofDataNew.time_ms,imuDataDelayed.time_ms);
// Save data to buffer
storedOF.push(ofDataNew);
}
}
/********************************************************
* MAGNETOMETER *
********************************************************/
// try changing compass, return true if a new compass is found
void NavEKF3_core::tryChangeCompass(void)
{
const Compass &compass = AP::compass();
const uint8_t maxCount = compass.get_count();
// search through the list of magnetometers
for (uint8_t i=1; i<maxCount; i++) {
uint8_t tempIndex = magSelectIndex + i;
// loop back to the start index if we have exceeded the bounds
if (tempIndex >= maxCount) {
tempIndex -= maxCount;
}
// if the magnetometer is allowed to be used for yaw and has a different index, we start using it
if (compass.healthy(tempIndex) && compass.use_for_yaw(tempIndex) && tempIndex != magSelectIndex) {
magSelectIndex = tempIndex;
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u switching to compass %u",(unsigned)imu_index,magSelectIndex);
// reset the timeout flag and timer
magTimeout = false;
lastHealthyMagTime_ms = imuSampleTime_ms;
// zero the learned magnetometer bias states
stateStruct.body_magfield.zero();
// clear the measurement buffer
storedMag.reset();
// clear the data waiting flag so that we do not use any data pending from the previous sensor
magDataToFuse = false;
// request a reset of the magnetic field states
magStateResetRequest = true;
// declare the field unlearned so that the reset request will be obeyed
magFieldLearned = false;
// reset body mag variances on next CovariancePrediction
needMagBodyVarReset = true;
return;
}
}
}
// check for new magnetometer data and update store measurements if available
void NavEKF3_core::readMagData()
{
if (!_ahrs->get_compass()) {
allMagSensorsFailed = true;
return;
}
const Compass &compass = AP::compass();
// If we are a vehicle with a sideslip constraint to aid yaw estimation and we have timed out on our last avialable
// magnetometer, then declare the magnetometers as failed for this flight
const uint8_t maxCount = compass.get_count();
if (allMagSensorsFailed || (magTimeout && assume_zero_sideslip() && magSelectIndex >= maxCount-1 && inFlight)) {
allMagSensorsFailed = true;
return;
}
if (compass.learn_offsets_enabled()) {
// while learning offsets keep all mag states reset
InitialiseVariablesMag();
wasLearningCompass_ms = imuSampleTime_ms;
} else if (wasLearningCompass_ms != 0 && imuSampleTime_ms - wasLearningCompass_ms > 1000) {
wasLearningCompass_ms = 0;
// force a new yaw alignment 1s after learning completes. The
// delay is to ensure any buffered mag samples are discarded
yawAlignComplete = false;
InitialiseVariablesMag();
}
// If the magnetometer has timed out (been rejected for too long), we find another magnetometer to use if available
// Don't do this if we are on the ground because there can be magnetic interference and we need to know if there is a problem
// before taking off. Don't do this within the first 30 seconds from startup because the yaw error could be due to large yaw gyro bias affsets
// if the timeout is due to a sensor failure, then declare a timeout regardless of onground status
if (maxCount > 1) {
bool fusionTimeout = magTimeout && !onGround && imuSampleTime_ms - ekfStartTime_ms > 30000 && !(frontend->_affinity & EKF_AFFINITY_MAG);
bool sensorTimeout = !compass.healthy(magSelectIndex) && imuSampleTime_ms - lastMagRead_ms > frontend->magFailTimeLimit_ms;
if (fusionTimeout || sensorTimeout) {
tryChangeCompass();
}
}
// limit compass update rate to prevent high processor loading because magnetometer fusion is an expensive step and we could overflow the FIFO buffer
if (use_compass() &&
compass.healthy(magSelectIndex) &&
((compass.last_update_usec(magSelectIndex) - lastMagUpdate_us) > 1000 * frontend->sensorIntervalMin_ms)) {
frontend->logging.log_compass = true;
// detect changes to magnetometer offset parameters and reset states
Vector3f nowMagOffsets = compass.get_offsets(magSelectIndex);
bool changeDetected = lastMagOffsetsValid && (nowMagOffsets != lastMagOffsets);
if (changeDetected) {
// zero the learned magnetometer bias states
stateStruct.body_magfield.zero();
// clear the measurement buffer
storedMag.reset();
// reset body mag variances on next
// CovariancePrediction. This copes with possible errors
// in the new offsets
needMagBodyVarReset = true;
}
lastMagOffsets = nowMagOffsets;
lastMagOffsetsValid = true;
// store time of last measurement update
lastMagUpdate_us = compass.last_update_usec(magSelectIndex);
// Magnetometer data at the current time horizon
mag_elements magDataNew;
// estimate of time magnetometer measurement was taken, allowing for delays
magDataNew.time_ms = imuSampleTime_ms - frontend->magDelay_ms;
// Correct for the average intersampling delay due to the filter updaterate
magDataNew.time_ms -= localFilterTimeStep_ms/2;
// read compass data and scale to improve numerical conditioning
magDataNew.mag = compass.get_field(magSelectIndex) * 0.001f;
// check for consistent data between magnetometers
consistentMagData = compass.consistent();
// save magnetometer measurement to buffer to be fused later
storedMag.push(magDataNew);
// remember time we read compass, to detect compass sensor failure
lastMagRead_ms = imuSampleTime_ms;
}
}
/********************************************************
* Inertial Measurements *
********************************************************/
/*
* Read IMU delta angle and delta velocity measurements and downsample to 100Hz
* for storage in the data buffers used by the EKF. If the IMU data arrives at
* lower rate than 100Hz, then no downsampling or upsampling will be performed.
* Downsampling is done using a method that does not introduce coning or sculling
* errors.
*/
void NavEKF3_core::readIMUData()
{
const AP_InertialSensor &ins = AP::ins();
// calculate an averaged IMU update rate using a spike and lowpass filter combination
dtIMUavg = 0.02f * constrain_float(ins.get_loop_delta_t(),0.5f * dtIMUavg, 2.0f * dtIMUavg) + 0.98f * dtIMUavg;
// the imu sample time is used as a common time reference throughout the filter
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
uint8_t accel_active, gyro_active;
if (ins.use_accel(imu_index)) {
accel_active = imu_index;
} else {
accel_active = ins.get_primary_accel();
}
if (ins.use_gyro(imu_index)) {
gyro_active = imu_index;
} else {
gyro_active = ins.get_primary_gyro();
}
if (gyro_active != gyro_index_active) {
// we are switching active gyro at runtime. Copy over the
// bias we have learned from the previously inactive
// gyro. We don't re-init the bias uncertainty as it should
// have the same uncertainty as the previously active gyro
stateStruct.gyro_bias = inactiveBias[gyro_active].gyro_bias;
gyro_index_active = gyro_active;
}
if (accel_active != accel_index_active) {
// switch to the learned accel bias for this IMU
stateStruct.accel_bias = inactiveBias[accel_active].accel_bias;
accel_index_active = accel_active;
}
// update the inactive bias states
learnInactiveBiases();
// run movement check using IMU data
updateMovementCheck();
readDeltaVelocity(accel_index_active, imuDataNew.delVel, imuDataNew.delVelDT);
accelPosOffset = ins.get_imu_pos_offset(accel_index_active);
imuDataNew.accel_index = accel_index_active;
// Get delta angle data from primary gyro or primary if not available
readDeltaAngle(gyro_index_active, imuDataNew.delAng);
imuDataNew.delAngDT = MAX(ins.get_delta_angle_dt(gyro_index_active),1.0e-4f);
imuDataNew.gyro_index = gyro_index_active;
// Get current time stamp
imuDataNew.time_ms = imuSampleTime_ms;
// Accumulate the measurement time interval for the delta velocity and angle data
imuDataDownSampledNew.delAngDT += imuDataNew.delAngDT;
imuDataDownSampledNew.delVelDT += imuDataNew.delVelDT;
// use the most recent IMU index for the downsampled IMU
// data. This isn't strictly correct if we switch IMUs between
// samples
imuDataDownSampledNew.gyro_index = imuDataNew.gyro_index;
imuDataDownSampledNew.accel_index = imuDataNew.accel_index;
// Rotate quaternon atitude from previous to new and normalise.
// Accumulation using quaternions prevents introduction of coning errors due to downsampling
imuQuatDownSampleNew.rotate(imuDataNew.delAng);
imuQuatDownSampleNew.normalize();
// Rotate the latest delta velocity into body frame at the start of accumulation
Matrix3f deltaRotMat;
imuQuatDownSampleNew.rotation_matrix(deltaRotMat);
// Apply the delta velocity to the delta velocity accumulator
imuDataDownSampledNew.delVel += deltaRotMat*imuDataNew.delVel;
// Keep track of the number of IMU frames since the last state prediction
framesSincePredict++;
/*
* If the target EKF time step has been accumulated, and the frontend has allowed start of a new predict cycle,
* then store the accumulated IMU data to be used by the state prediction, ignoring the frontend permission if more
* than twice the target time has lapsed. Adjust the target EKF step time threshold to allow for timing jitter in the
* IMU data.
*/
if ((imuDataDownSampledNew.delAngDT >= (EKF_TARGET_DT-(dtIMUavg*0.5f)) && startPredictEnabled) ||
(imuDataDownSampledNew.delAngDT >= 2.0f*EKF_TARGET_DT)) {
// convert the accumulated quaternion to an equivalent delta angle
imuQuatDownSampleNew.to_axis_angle(imuDataDownSampledNew.delAng);
// Time stamp the data
imuDataDownSampledNew.time_ms = imuSampleTime_ms;
// Write data to the FIFO IMU buffer
storedIMU.push_youngest_element(imuDataDownSampledNew);
// calculate the achieved average time step rate for the EKF using a combination spike and LPF
float dtNow = constrain_float(0.5f*(imuDataDownSampledNew.delAngDT+imuDataDownSampledNew.delVelDT),0.5f * dtEkfAvg, 2.0f * dtEkfAvg);
dtEkfAvg = 0.98f * dtEkfAvg + 0.02f * dtNow;
// zero the accumulated IMU data and quaternion
imuDataDownSampledNew.delAng.zero();
imuDataDownSampledNew.delVel.zero();
imuDataDownSampledNew.delAngDT = 0.0f;
imuDataDownSampledNew.delVelDT = 0.0f;
imuQuatDownSampleNew[0] = 1.0f;
imuQuatDownSampleNew[3] = imuQuatDownSampleNew[2] = imuQuatDownSampleNew[1] = 0.0f;
// reset the counter used to let the frontend know how many frames have elapsed since we started a new update cycle
framesSincePredict = 0;
// set the flag to let the filter know it has new IMU data and needs to run
runUpdates = true;
// extract the oldest available data from the FIFO buffer
imuDataDelayed = storedIMU.pop_oldest_element();
// protect against delta time going to zero
float minDT = 0.1f * dtEkfAvg;
imuDataDelayed.delAngDT = MAX(imuDataDelayed.delAngDT,minDT);
imuDataDelayed.delVelDT = MAX(imuDataDelayed.delVelDT,minDT);
updateTimingStatistics();
// correct the extracted IMU data for sensor errors
delAngCorrected = imuDataDelayed.delAng;
delVelCorrected = imuDataDelayed.delVel;
correctDeltaAngle(delAngCorrected, imuDataDelayed.delAngDT, imuDataDelayed.gyro_index);
correctDeltaVelocity(delVelCorrected, imuDataDelayed.delVelDT, imuDataDelayed.accel_index);
} else {
// we don't have new IMU data in the buffer so don't run filter updates on this time step
runUpdates = false;
}
}
// read the delta velocity and corresponding time interval from the IMU
// return false if data is not available
bool NavEKF3_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
const AP_InertialSensor &ins = AP::ins();
if (ins_index < ins.get_accel_count()) {
ins.get_delta_velocity(ins_index,dVel);
dVel_dt = MAX(ins.get_delta_velocity_dt(ins_index),1.0e-4f);
return true;
}
return false;
}
/********************************************************
* Global Position Measurement *
********************************************************/
// check for new valid GPS data and update stored measurement if available
void NavEKF3_core::readGpsData()
{
// check for new GPS data
// limit update rate to avoid overflowing the FIFO buffer
const AP_GPS &gps = AP::gps();
if (gps.last_message_time_ms(selected_gps) - lastTimeGpsReceived_ms > frontend->sensorIntervalMin_ms) {
if (gps.status(selected_gps) >= AP_GPS::GPS_OK_FIX_3D) {
// report GPS fix status
gpsCheckStatus.bad_fix = false;
// store fix time from previous read
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
// get current fix time
lastTimeGpsReceived_ms = gps.last_message_time_ms(selected_gps);
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
// ideally we should be using a timing signal from the GPS receiver to set this time
// Use the driver specified delay
float gps_delay_sec = 0;
gps.get_lag(selected_gps, gps_delay_sec);
gpsDataNew.time_ms = lastTimeGpsReceived_ms - (uint32_t)(gps_delay_sec * 1000.0f);
// Correct for the average intersampling delay due to the filter updaterate
gpsDataNew.time_ms -= localFilterTimeStep_ms/2;
// Prevent the time stamp falling outside the oldest and newest IMU data in the buffer
gpsDataNew.time_ms = MIN(MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms),imuDataDownSampledNew.time_ms);
// Get which GPS we are using for position information
gpsDataNew.sensor_idx = selected_gps;
// read the NED velocity from the GPS
gpsDataNew.vel = gps.velocity(selected_gps);
// Use the speed and position accuracy from the GPS if available, otherwise set it to zero.
// Apply a decaying envelope filter with a 5 second time constant to the raw accuracy data
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
gpsSpdAccuracy *= (1.0f - alpha);
float gpsSpdAccRaw;
if (!gps.speed_accuracy(selected_gps, gpsSpdAccRaw)) {
gpsSpdAccuracy = 0.0f;
} else {
gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw);
gpsSpdAccuracy = MIN(gpsSpdAccuracy,50.0f);
gpsSpdAccuracy = MAX(gpsSpdAccuracy,frontend->_gpsHorizVelNoise);
}
gpsPosAccuracy *= (1.0f - alpha);
float gpsPosAccRaw;
if (!gps.horizontal_accuracy(selected_gps, gpsPosAccRaw)) {
gpsPosAccuracy = 0.0f;
} else {
gpsPosAccuracy = MAX(gpsPosAccuracy,gpsPosAccRaw);
gpsPosAccuracy = MIN(gpsPosAccuracy,100.0f);
gpsPosAccuracy = MAX(gpsPosAccuracy, frontend->_gpsHorizPosNoise);
}
gpsHgtAccuracy *= (1.0f - alpha);
float gpsHgtAccRaw;
if (!gps.vertical_accuracy(selected_gps, gpsHgtAccRaw)) {
gpsHgtAccuracy = 0.0f;
} else {
gpsHgtAccuracy = MAX(gpsHgtAccuracy,gpsHgtAccRaw);
gpsHgtAccuracy = MIN(gpsHgtAccuracy,100.0f);
gpsHgtAccuracy = MAX(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise);
}
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
if (gps.num_sats(selected_gps) >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.0f;
} else if (gps.num_sats(selected_gps) == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
gpsNoiseScaler = 1.4f;
} else { // <= 4 satellites or in constant position mode
gpsNoiseScaler = 2.0f;
}
// Check if GPS can output vertical velocity, vertical velocity use is permitted and set GPS fusion mode accordingly
if (gps.have_vertical_velocity(selected_gps) && (frontend->_fusionModeGPS == 0) && !frontend->inhibitGpsVertVelUse) {
useGpsVertVel = true;
} else {
useGpsVertVel = false;
}
// Monitor quality of the GPS velocity data before and after alignment
calcGpsGoodToAlign();
// Post-alignment checks
calcGpsGoodForFlight();
// see if we can get an origin from the frontend
if (!validOrigin && frontend->common_origin_valid) {
setOrigin(frontend->common_EKF_origin);
}
// Read the GPS location in WGS-84 lat,long,height coordinates
const struct Location &gpsloc = gps.location(selected_gps);
// Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed
if (gpsGoodToAlign && !validOrigin) {
setOrigin(gpsloc);
// set the NE earth magnetic field states using the published declination
// and set the corresponding variances and covariances
alignMagStateDeclination();
// Set the height of the NED origin
ekfGpsRefHgt = (double)0.01 * (double)gpsloc.alt + (double)outputDataNew.position.z;
// Set the uncertainty of the GPS origin height
ekfOriginHgtVar = sq(gpsHgtAccuracy);
}
if (gpsGoodToAlign && !have_table_earth_field) {
const Compass *compass = _ahrs->get_compass();
if (compass && compass->have_scale_factor(magSelectIndex) && compass->auto_declination_enabled()) {
table_earth_field_ga = AP_Declination::get_earth_field_ga(gpsloc);
table_declination = radians(AP_Declination::get_declination(gpsloc.lat*1.0e-7,
gpsloc.lng*1.0e-7));
have_table_earth_field = true;
if (frontend->_mag_ef_limit > 0) {
// initialise earth field from tables
stateStruct.earth_magfield = table_earth_field_ga;
}
}
}
// convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin
if (validOrigin) {
gpsDataNew.pos = EKF_origin.get_distance_NE(gpsloc);
if ((frontend->_originHgtMode & (1<<2)) == 0) {
gpsDataNew.hgt = (float)((double)0.01 * (double)gpsloc.alt - ekfGpsRefHgt);
} else {
gpsDataNew.hgt = 0.01 * (gpsloc.alt - EKF_origin.alt);
}
storedGPS.push(gpsDataNew);
// declare GPS available for use
gpsNotAvailable = false;
}
// if the GPS has yaw data then input that as well
float yaw_deg, yaw_accuracy_deg;
if (AP::gps().gps_yaw_deg(yaw_deg, yaw_accuracy_deg)) {
// GPS modules are rather too optimistic about their
// accuracy. Set to min of 5 degrees here to prevent
// the user constantly receiving warnings about high
// normalised yaw innovations
const float min_yaw_accuracy_deg = 5.0f;
yaw_accuracy_deg = MAX(yaw_accuracy_deg, min_yaw_accuracy_deg);
writeEulerYawAngle(radians(yaw_deg), radians(yaw_accuracy_deg), gpsDataNew.time_ms, 2);
}
} else {
// report GPS fix status
gpsCheckStatus.bad_fix = true;
hal.util->snprintf(prearm_fail_string, sizeof(prearm_fail_string), "Waiting for 3D fix");
}
}
}
// read the delta angle and corresponding time interval from the IMU
// return false if data is not available
bool NavEKF3_core::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) {
const AP_InertialSensor &ins = AP::ins();
if (ins_index < ins.get_gyro_count()) {
ins.get_delta_angle(ins_index,dAng);
frontend->logging.log_imu = true;
return true;
}
return false;
}
/********************************************************
* Height Measurements *
********************************************************/
// check for new pressure altitude measurement data and update stored measurement if available
void NavEKF3_core::readBaroData()
{
// check to see if baro measurement has changed so we know if a new measurement has arrived
// limit update rate to avoid overflowing the FIFO buffer
const AP_Baro &baro = AP::baro();
if (baro.get_last_update(selected_baro) - lastBaroReceived_ms > frontend->sensorIntervalMin_ms) {
frontend->logging.log_baro = true;
baroDataNew.hgt = baro.get_altitude(selected_baro);
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
// This prevents negative baro disturbances due to rotor wash ground interaction corrupting the EKF altitude during initial ascent
if (expectGndEffectTakeoff) {
baroDataNew.hgt = MAX(baroDataNew.hgt, meaHgtAtTakeOff);
}
// time stamp used to check for new measurement
lastBaroReceived_ms = baro.get_last_update(selected_baro);
// estimate of time height measurement was taken, allowing for delays
baroDataNew.time_ms = lastBaroReceived_ms - frontend->_hgtDelay_ms;
// Correct for the average intersampling delay due to the filter updaterate
baroDataNew.time_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
baroDataNew.time_ms = MAX(baroDataNew.time_ms,imuDataDelayed.time_ms);
// save baro measurement to buffer to be fused later
storedBaro.push(baroDataNew);
}
}
// calculate filtered offset between baro height measurement and EKF height estimate
// offset should be subtracted from baro measurement to match filter estimate
// offset is used to enable reversion to baro from alternate height data source
void NavEKF3_core::calcFiltBaroOffset()
{
// Apply a first order LPF with spike protection
baroHgtOffset += 0.1f * constrain_float(baroDataDelayed.hgt + stateStruct.position.z - baroHgtOffset, -5.0f, 5.0f);
}
// correct the height of the EKF origin to be consistent with GPS Data using a Bayes filter.
void NavEKF3_core::correctEkfOriginHeight()
{
// Estimate the WGS-84 height of the EKF's origin using a Bayes filter
// calculate the variance of our a-priori estimate of the ekf origin height
float deltaTime = constrain_float(0.001f * (imuDataDelayed.time_ms - lastOriginHgtTime_ms), 0.0f, 1.0f);
if (activeHgtSource == HGT_SOURCE_BARO) {
// Use the baro drift rate
const float baroDriftRate = 0.05f;
ekfOriginHgtVar += sq(baroDriftRate * deltaTime);
} else if (activeHgtSource == HGT_SOURCE_RNG) {
// use the worse case expected terrain gradient and vehicle horizontal speed
const float maxTerrGrad = 0.25f;
ekfOriginHgtVar += sq(maxTerrGrad * norm(stateStruct.velocity.x , stateStruct.velocity.y) * deltaTime);
} else {
// by definition our height source is absolute so cannot run this filter
return;
}
lastOriginHgtTime_ms = imuDataDelayed.time_ms;
// calculate the observation variance assuming EKF error relative to datum is independent of GPS observation error
// when not using GPS as height source
float originHgtObsVar = sq(gpsHgtAccuracy) + P[9][9];
// calculate the correction gain
float gain = ekfOriginHgtVar / (ekfOriginHgtVar + originHgtObsVar);
// calculate the innovation
float innovation = - stateStruct.position.z - gpsDataDelayed.hgt;
// check the innovation variance ratio
float ratio = sq(innovation) / (ekfOriginHgtVar + originHgtObsVar);
// correct the EKF origin and variance estimate if the innovation is less than 5-sigma
if (ratio < 25.0f && gpsAccuracyGood) {
ekfGpsRefHgt -= (double)(gain * innovation);
ekfOriginHgtVar -= MAX(gain * ekfOriginHgtVar , 0.0f);
}
}
/********************************************************
* Air Speed Measurements *
********************************************************/
// check for new airspeed data and update stored measurements if available
void NavEKF3_core::readAirSpdData()
{
// if airspeed reading is valid and is set by the user to be used and has been updated then
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
// know a new measurement is available
const auto *airspeed = AP::airspeed();
if (airspeed &&
airspeed->use(selected_airspeed) &&
(airspeed->last_update_ms(selected_airspeed) - timeTasReceived_ms) > frontend->sensorIntervalMin_ms) {
tasDataNew.tas = airspeed->get_airspeed(selected_airspeed) * _ahrs->get_EAS2TAS();
timeTasReceived_ms = airspeed->last_update_ms(selected_airspeed);
tasDataNew.time_ms = timeTasReceived_ms - frontend->tasDelay_ms;
// Correct for the average intersampling delay due to the filter update rate
tasDataNew.time_ms -= localFilterTimeStep_ms/2;
// Save data into the buffer to be fused when the fusion time horizon catches up with it
storedTAS.push(tasDataNew);
}
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused
tasDataToFuse = storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms);
}
/********************************************************
* Range Beacon Measurements *
********************************************************/
// check for new range beacon data and push to data buffer if available
void NavEKF3_core::readRngBcnData()
{
// check that arrays are large enough
static_assert(ARRAY_SIZE(lastTimeRngBcn_ms) >= AP_BEACON_MAX_BEACONS, "lastTimeRngBcn_ms should have at least AP_BEACON_MAX_BEACONS elements");
static_assert(ARRAY_SIZE(rngBcnFusionReport) >= AP_BEACON_MAX_BEACONS, "rngBcnFusionReport should have at least AP_BEACON_MAX_BEACONS elements");
// get the location of the beacon data
const AP_Beacon *beacon = AP::beacon();
// exit immediately if no beacon object
if (beacon == nullptr) {
return;
}
// get the number of beacons in use
N_beacons = MIN(beacon->count(), ARRAY_SIZE(lastTimeRngBcn_ms));
// search through all the beacons for new data and if we find it stop searching and push the data into the observation buffer
bool newDataPushed = false;
uint8_t numRngBcnsChecked = 0;
// start the search one index up from where we left it last time
uint8_t index = lastRngBcnChecked;
while (!newDataPushed && (numRngBcnsChecked < N_beacons)) {
// track the number of beacons checked
numRngBcnsChecked++;
// move to next beacon, wrap index if necessary
index++;
if (index >= N_beacons) {
index = 0;
}
// check that the beacon is healthy and has new data
if (beacon->beacon_healthy(index) && beacon->beacon_last_update_ms(index) != lastTimeRngBcn_ms[index]) {
rng_bcn_elements rngBcnDataNew = {};
// set the timestamp, correcting for measurement delay and average intersampling delay due to the filter update rate
lastTimeRngBcn_ms[index] = beacon->beacon_last_update_ms(index);
rngBcnDataNew.time_ms = lastTimeRngBcn_ms[index] - frontend->_rngBcnDelay_ms - localFilterTimeStep_ms/2;
// set the range noise
// TODO the range library should provide the noise/accuracy estimate for each beacon
rngBcnDataNew.rngErr = frontend->_rngBcnNoise;
// set the range measurement
rngBcnDataNew.rng = beacon->beacon_distance(index);
// set the beacon position
rngBcnDataNew.beacon_posNED = beacon->beacon_position(index);
// identify the beacon identifier
rngBcnDataNew.beacon_ID = index;
// indicate we have new data to push to the buffer
newDataPushed = true;
// update the last checked index
lastRngBcnChecked = index;
// Save data into the buffer to be fused when the fusion time horizon catches up with it
storedRangeBeacon.push(rngBcnDataNew);
}
}
// Check if the beacon system has returned a 3D fix
if (beacon->get_vehicle_position_ned(beaconVehiclePosNED, beaconVehiclePosErr)) {
rngBcnLast3DmeasTime_ms = imuSampleTime_ms;
}
// Check if the range beacon data can be used to align the vehicle position
if ((imuSampleTime_ms - rngBcnLast3DmeasTime_ms < 250) && (beaconVehiclePosErr < 1.0f) && rngBcnAlignmentCompleted) {
// check for consistency between the position reported by the beacon and the position from the 3-State alignment filter
const float posDiffSq = sq(receiverPos.x - beaconVehiclePosNED.x) + sq(receiverPos.y - beaconVehiclePosNED.y);
const float posDiffVar = sq(beaconVehiclePosErr) + receiverPosCov[0][0] + receiverPosCov[1][1];
if (posDiffSq < 9.0f * posDiffVar) {
rngBcnGoodToAlign = true;
// Set the EKF origin and magnetic field declination if not previously set
if (!validOrigin && (PV_AidingMode != AID_ABSOLUTE)) {
// get origin from beacon system
Location origin_loc;
if (beacon->get_origin(origin_loc)) {
setOriginLLH(origin_loc);
// set the NE earth magnetic field states using the published declination
// and set the corresponding variances and covariances
alignMagStateDeclination();
// Set the uncertainty of the origin height
ekfOriginHgtVar = sq(beaconVehiclePosErr);
}
}
} else {
rngBcnGoodToAlign = false;
}
} else {
rngBcnGoodToAlign = false;
}
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused
rngBcnDataToFuse = storedRangeBeacon.recall(rngBcnDataDelayed, imuDataDelayed.time_ms);
// Correct the range beacon earth frame origin for estimated offset relative to the EKF earth frame origin
if (rngBcnDataToFuse) {
rngBcnDataDelayed.beacon_posNED.x += bcnPosOffsetNED.x;
rngBcnDataDelayed.beacon_posNED.y += bcnPosOffsetNED.y;
}
}
/********************************************************
* Independant yaw sensor measurements *
********************************************************/
void NavEKF3_core::writeEulerYawAngle(float yawAngle, float yawAngleErr, uint32_t timeStamp_ms, uint8_t type)
{
// limit update rate to maximum allowed by sensor buffers and fusion process
// don't try to write to buffer until the filter has been initialised
if (((timeStamp_ms - yawMeasTime_ms) < frontend->sensorIntervalMin_ms) || !statesInitialised) {
return;
}
yawAngDataNew.yawAng = yawAngle;
yawAngDataNew.yawAngErr = yawAngleErr;
yawAngDataNew.type = type;
yawAngDataNew.time_ms = timeStamp_ms;
storedYawAng.push(yawAngDataNew);
yawMeasTime_ms = timeStamp_ms;
}
// Writes the default equivalent airspeed in m/s to be used in forward flight if a measured airspeed is required and not available.
void NavEKF3_core::writeDefaultAirSpeed(float airspeed)
{
defaultAirSpeed = airspeed;
}
/********************************************************
* External Navigation Measurements *
********************************************************/
void NavEKF3_core::writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms)
{
// protect against NaN
if (pos.is_nan() || isnan(posErr)) {
return;
}
// limit update rate to maximum allowed by sensor buffers and fusion process
// don't try to write to buffer until the filter has been initialised
if (((timeStamp_ms - extNavMeasTime_ms) < frontend->extNavIntervalMin_ms) || !statesInitialised) {
return;
} else {
extNavMeasTime_ms = timeStamp_ms;
}
ext_nav_elements extNavDataNew {};
if (resetTime_ms != extNavLastPosResetTime_ms) {
extNavDataNew.posReset = true;
extNavLastPosResetTime_ms = resetTime_ms;
} else {
extNavDataNew.posReset = false;
}
extNavDataNew.pos = pos;
extNavDataNew.posErr = posErr;
// calculate timestamp
timeStamp_ms = timeStamp_ms - delay_ms;
// Correct for the average intersampling delay due to the filter update rate
timeStamp_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
timeStamp_ms = MAX(timeStamp_ms, imuDataDelayed.time_ms);
extNavDataNew.time_ms = timeStamp_ms;
// store position data to buffer
storedExtNav.push(extNavDataNew);
// protect against attitude or angle being NaN
if (!quat.is_nan() && !isnan(angErr)) {
// extract yaw from the attitude
float roll_rad, pitch_rad, yaw_rad;
quat.to_euler(roll_rad, pitch_rad, yaw_rad);
// ensure yaw accuracy is no better than 5 degrees (some callers may send zero)
const float yaw_accuracy_rad = MAX(angErr, radians(5.0f));
writeEulerYawAngle(yaw_rad, yaw_accuracy_rad, timeStamp_ms, 2);
}
}
void NavEKF3_core::writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms)
{
// sanity check for NaNs
if (vel.is_nan() || isnan(err)) {
return;
}
if ((timeStamp_ms - extNavVelMeasTime_ms) < frontend->extNavIntervalMin_ms) {
return;
}
extNavVelMeasTime_ms = timeStamp_ms - delay_ms;
useExtNavVel = true;
// Correct for the average intersampling delay due to the filter updaterate
timeStamp_ms -= localFilterTimeStep_ms/2;
// Prevent time delay exceeding age of oldest IMU data in the buffer
timeStamp_ms = MAX(timeStamp_ms,imuDataDelayed.time_ms);
const ext_nav_vel_elements extNavVelNew {
vel,
err,
timeStamp_ms
};
storedExtNavVel.push(extNavVelNew);
}
/*
update the GPS selection
*/
void NavEKF3_core::update_gps_selection(void)
{
auto &gps = AP::gps();
// in normal operation use the primary GPS
selected_gps = gps.primary_sensor();
preferred_gps = selected_gps;
if (frontend->_affinity & EKF_AFFINITY_GPS) {
if (core_index < gps.num_sensors() ) {
// always prefer our core_index, unless we don't have that
// many GPS sensors available
preferred_gps = core_index;
}
if (gps.status(preferred_gps) >= AP_GPS::GPS_OK_FIX_3D) {
// select our preferred_gps if it has a 3D fix, otherwise
// use the primary GPS
selected_gps = preferred_gps;
}
}
}
/*
update the mag selection
*/
void NavEKF3_core::update_mag_selection(void)
{
const auto *compass = _ahrs->get_compass();
if (compass == nullptr) {
return;
}
if (frontend->_affinity & EKF_AFFINITY_MAG) {
if (core_index < compass->get_count() &&
compass->healthy(core_index) &&
compass->use_for_yaw(core_index)) {
// use core_index compass if it is healthy
magSelectIndex = core_index;
}
}
}
/*
update the baro selection
*/
void NavEKF3_core::update_baro_selection(void)
{
auto &baro = AP::baro();
// in normal operation use the primary baro
selected_baro = baro.get_primary();
if (frontend->_affinity & EKF_AFFINITY_BARO) {
if (core_index < baro.num_instances() &&
baro.healthy(core_index)) {
// use core_index baro if it is healthy
selected_baro = core_index;
}
}
}
/*
update the airspeed selection
*/
void NavEKF3_core::update_airspeed_selection(void)
{
const auto *arsp = AP::airspeed();
if (arsp == nullptr) {
return;
}
// in normal operation use the primary airspeed sensor
selected_airspeed = arsp->get_primary();
if (frontend->_affinity & EKF_AFFINITY_ARSP) {
if (core_index < arsp->get_num_sensors() &&
arsp->healthy(core_index) &&
arsp->use(core_index)) {
// use core_index airspeed if it is healthy
selected_airspeed = core_index;
}
}
}
/*
update sensor selections
*/
void NavEKF3_core::update_sensor_selection(void)
{
update_gps_selection();
update_mag_selection();
update_baro_selection();
update_airspeed_selection();
}
/*
update timing statistics structure
*/
void NavEKF3_core::updateTimingStatistics(void)
{
if (timing.count == 0) {
timing.dtIMUavg_max = dtIMUavg;
timing.dtIMUavg_min = dtIMUavg;
timing.dtEKFavg_max = dtEkfAvg;
timing.dtEKFavg_min = dtEkfAvg;
timing.delAngDT_max = imuDataDelayed.delAngDT;
timing.delAngDT_min = imuDataDelayed.delAngDT;
timing.delVelDT_max = imuDataDelayed.delVelDT;
timing.delVelDT_min = imuDataDelayed.delVelDT;
} else {
timing.dtIMUavg_max = MAX(timing.dtIMUavg_max, dtIMUavg);
timing.dtIMUavg_min = MIN(timing.dtIMUavg_min, dtIMUavg);
timing.dtEKFavg_max = MAX(timing.dtEKFavg_max, dtEkfAvg);
timing.dtEKFavg_min = MIN(timing.dtEKFavg_min, dtEkfAvg);
timing.delAngDT_max = MAX(timing.delAngDT_max, imuDataDelayed.delAngDT);
timing.delAngDT_min = MIN(timing.delAngDT_min, imuDataDelayed.delAngDT);
timing.delVelDT_max = MAX(timing.delVelDT_max, imuDataDelayed.delVelDT);
timing.delVelDT_min = MIN(timing.delVelDT_min, imuDataDelayed.delVelDT);
}
timing.count++;
}
// get timing statistics structure
void NavEKF3_core::getTimingStatistics(struct ekf_timing &_timing)
{
_timing = timing;
memset(&timing, 0, sizeof(timing));
}
/*
update estimates of inactive bias states. This keeps inactive IMUs
as hot-spares so we can switch to them without causing a jump in the
error
*/
void NavEKF3_core::learnInactiveBiases(void)
{
const AP_InertialSensor &ins = AP::ins();
// learn gyro biases
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (!ins.use_gyro(i)) {
// can't use this gyro
continue;
}
if (gyro_index_active == i) {
// use current estimates from main filter of gyro bias
inactiveBias[i].gyro_bias = stateStruct.gyro_bias;
} else {
// get filtered gyro and use the difference between the
// corrected gyro on the active IMU and the inactive IMU
// to move the inactive bias towards the right value
Vector3f filtered_gyro_active = ins.get_gyro(gyro_index_active) - (stateStruct.gyro_bias/dtEkfAvg);
Vector3f filtered_gyro_inactive = ins.get_gyro(i) - (inactiveBias[i].gyro_bias/dtEkfAvg);
Vector3f error = filtered_gyro_active - filtered_gyro_inactive;
// prevent a single large error from contaminating bias estimate
const float bias_limit = radians(5);
error.x = constrain_float(error.x, -bias_limit, bias_limit);
error.y = constrain_float(error.y, -bias_limit, bias_limit);
error.z = constrain_float(error.z, -bias_limit, bias_limit);
// slowly bring the inactive gyro in line with the active gyro. This corrects a 5 deg/sec
// gyro bias error in around 1 minute
inactiveBias[i].gyro_bias -= error * (1.0e-4f * dtEkfAvg);
}
}
// learn accel biases
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (!ins.use_accel(i)) {
// can't use this accel
continue;
}
if (accel_index_active == i) {
// use current estimates from main filter of accel bias
inactiveBias[i].accel_bias = stateStruct.accel_bias;
} else {
// get filtered accel and use the difference between the
// corrected accel on the active IMU and the inactive IMU
// to move the inactive bias towards the right value
Vector3f filtered_accel_active = ins.get_accel(accel_index_active) - (stateStruct.accel_bias/dtEkfAvg);
Vector3f filtered_accel_inactive = ins.get_accel(i) - (inactiveBias[i].accel_bias/dtEkfAvg);
Vector3f error = filtered_accel_active - filtered_accel_inactive;
// prevent a single large error from contaminating bias estimate
const float bias_limit = 1.0; // m/s/s
error.x = constrain_float(error.x, -bias_limit, bias_limit);
error.y = constrain_float(error.y, -bias_limit, bias_limit);
error.z = constrain_float(error.z, -bias_limit, bias_limit);
// slowly bring the inactive accel in line with the active
// accel. This corrects a 0.5 m/s/s accel bias error in
// around 1 minute
inactiveBias[i].accel_bias -= error * (1.0e-4f * dtEkfAvg);
}
}
}
/*
return declination in radians
*/
float NavEKF3_core::MagDeclination(void) const
{
// if we are using the WMM tables then use the table declination
// to ensure consistency with the table mag field. Otherwise use
// the declination from the compass library
if (have_table_earth_field && frontend->_mag_ef_limit > 0) {
return table_declination;
}
if (!use_compass()) {
return 0;
}
return _ahrs->get_compass()->get_declination();
}
/*
Update the on ground and not moving check.
Should be called once per IMU update.
Only updates when on ground and when operating without a magnetometer
*/
void NavEKF3_core::updateMovementCheck(void)
{
const bool runCheck = onGround && (effectiveMagCal == MagCal::EXTERNAL_YAW || effectiveMagCal == MagCal::EXTERNAL_YAW_FALLBACK || !use_compass());
if (!runCheck)
{
onGroundNotMoving = false;
return;
}
const float gyro_limit = radians(3.0f);
const float gyro_diff_limit = 0.1;
const float accel_limit = 1.0f;
const float accel_diff_limit = 5.0f;
const float hysteresis_ratio = 0.7f;
const float dtEkfAvgInv = 1.0f / dtEkfAvg;
// get latest bias corrected gyro and accelerometer data
const AP_InertialSensor &ins = AP::ins();
Vector3f gyro = ins.get_gyro(gyro_index_active) - stateStruct.gyro_bias * dtEkfAvgInv;
Vector3f accel = ins.get_accel(accel_index_active) - stateStruct.accel_bias * dtEkfAvgInv;
if (!prevOnGround) {
gyro_prev = gyro;
accel_prev = accel;
onGroundNotMoving = false;
gyro_diff = gyro_diff_limit;
accel_diff = accel_diff_limit;
return;
}
// calculate a gyro rate of change metric
Vector3f temp = (gyro - gyro_prev) * dtEkfAvgInv;
gyro_prev = gyro;
gyro_diff = 0.99f * gyro_diff + 0.01f * temp.length();
// calculate a acceleration rate of change metric
temp = (accel - accel_prev) * dtEkfAvgInv;
accel_prev = accel;
accel_diff = 0.99f * accel_diff + 0.01f * temp.length();
const float gyro_length_ratio = gyro.length() / gyro_limit;
const float accel_length_ratio = (accel.length() - GRAVITY_MSS) / accel_limit;
const float gyro_diff_ratio = gyro_diff / gyro_diff_limit;
const float accel_diff_ratio = accel_diff / accel_diff_limit;
bool logStatusChange = false;
if (onGroundNotMoving) {
if (gyro_length_ratio > 1.0f ||
fabsf(accel_length_ratio) > 1.0f ||
gyro_diff_ratio > 1.0f ||
accel_diff_ratio > 1.0f)
{
onGroundNotMoving = false;
logStatusChange = true;
}
} else if (gyro_length_ratio < hysteresis_ratio &&
fabsf(accel_length_ratio) < hysteresis_ratio &&
gyro_diff_ratio < hysteresis_ratio &&
accel_diff_ratio < hysteresis_ratio)
{
onGroundNotMoving = true;
logStatusChange = true;
}
if (logStatusChange || imuSampleTime_ms - lastMoveCheckLogTime_ms > 200) {
lastMoveCheckLogTime_ms = imuSampleTime_ms;
// @LoggerMessage: XKFM
// @Description: EKF3 diagnostic data for on-ground-and-not-moving check
// @Field: TimeUS: Time since system startup
// @Field: OGNM: True of on ground and not moving
// @Field: GLR: Gyroscope length ratio
// @Field: ALR: Accelerometer length ratio
// @Field: GDR: Gyroscope rate of change ratio
// @Field: ADR: Accelerometer rate of change ratio
AP::logger().Write("XKFM",
"TimeUS,OGNM,GLR,ALR,GDR,ADR",
"s-----",
"F-----",
"QBffff",
AP_HAL::micros64(),
uint8_t(onGroundNotMoving),
float(gyro_length_ratio),
float(accel_length_ratio),
float(gyro_diff_ratio),
float(accel_diff_ratio));
}
}