ardupilot/APMrover2/Steering.pde
Andrew Tridgell 887942471e Rover: use Y accel computed from gyro and velocity
this should be less susceptible to noise and attitude errors,
hopefully leading to better learning
2013-09-09 18:04:40 +10:00

314 lines
9.7 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************
* Throttle slew limit
*****************************************/
static void throttle_slew_limit(int16_t last_throttle)
{
// if slew limit rate is set to zero then do not slew limit
if (g.throttle_slewrate) {
// limit throttle change by the given percentage per second
float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(channel_throttle->radio_max - channel_throttle->radio_min);
// allow a minimum change of 1 PWM per cycle
if (temp < 1) {
temp = 1;
}
channel_throttle->radio_out = constrain_int16(channel_throttle->radio_out, last_throttle - temp, last_throttle + temp);
}
}
/*
check for triggering of start of auto mode
*/
static bool auto_check_trigger(void)
{
// only applies to AUTO mode
if (control_mode != AUTO) {
return true;
}
// check for user pressing the auto trigger to off
if (auto_triggered && g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 1) {
gcs_send_text_P(SEVERITY_LOW, PSTR("AUTO triggered off"));
auto_triggered = false;
return false;
}
// if already triggered, then return true, so you don't
// need to hold the switch down
if (auto_triggered) {
return true;
}
if (g.auto_trigger_pin == -1 && g.auto_kickstart == 0.0f) {
// no trigger configured - let's go!
auto_triggered = true;
return true;
}
if (g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 0) {
gcs_send_text_P(SEVERITY_LOW, PSTR("Triggered AUTO with pin"));
auto_triggered = true;
return true;
}
if (g.auto_kickstart != 0.0f) {
float xaccel = ins.get_accel().x;
if (xaccel >= g.auto_kickstart) {
gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel);
auto_triggered = true;
return true;
}
}
return false;
}
/*
calculate the throtte for auto-throttle modes
*/
static void calc_throttle(float target_speed)
{
if (!auto_check_trigger()) {
channel_throttle->servo_out = g.throttle_min.get();
return;
}
if (target_speed <= 0) {
// cope with zero requested speed
channel_throttle->servo_out = g.throttle_min.get();
return;
}
int throttle_target = g.throttle_cruise + throttle_nudge;
/*
reduce target speed in proportion to turning rate, up to the
SPEED_TURN_GAIN percentage.
*/
float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g*GRAVITY_MSS));
steer_rate = constrain_float(steer_rate, 0.0, 1.0);
float reduction = 1.0 - steer_rate*(100 - g.speed_turn_gain)*0.01;
if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) {
// in auto-modes we reduce speed when approaching waypoints
float reduction2 = 1.0 - (100-g.speed_turn_gain)*0.01*((g.speed_turn_dist - wp_distance)/g.speed_turn_dist);
if (reduction2 < reduction) {
reduction = reduction2;
}
}
// reduce the target speed by the reduction factor
target_speed *= reduction;
groundspeed_error = target_speed - ground_speed;
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100);
// also reduce the throttle by the reduction factor. This gives a
// much faster response in turns
throttle *= reduction;
channel_throttle->servo_out = constrain_int16(throttle, g.throttle_min.get(), g.throttle_max.get());
}
/*****************************************
* Calculate desired turn angles (in medium freq loop)
*****************************************/
static void calc_lateral_acceleration()
{
switch (control_mode) {
case AUTO:
nav_controller->update_waypoint(prev_WP, next_WP);
break;
case RTL:
case GUIDED:
case STEERING:
nav_controller->update_waypoint(current_loc, next_WP);
break;
default:
return;
}
// Calculate the required turn of the wheels
// negative error = left turn
// positive error = right turn
lateral_acceleration = nav_controller->lateral_acceleration();
}
/*
calculate steering angle given lateral_acceleration
*/
static void calc_nav_steer()
{
float speed = g_gps->ground_speed_cm * 0.01f;
float steer;
if (speed < 1.0f) {
// gps speed isn't very accurate at low speed
speed = 1.0f;
}
// add in obstacle avoidance
lateral_acceleration += (obstacle.turn_angle/45.0f) * g.turn_max_g;
// constrain to max G force
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g*GRAVITY_MSS, g.turn_max_g*GRAVITY_MSS);
// this is a linear approximation of the inverse steering
// equation for a rover. It returns steering as a proportion
// from -1 to 1
steer = 0.5 * lateral_acceleration * g.turn_circle / (speed*speed);
steer = constrain_float(steer, -1, 1);
channel_steer->servo_out = steer * 4500;
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void set_servos(void)
{
int16_t last_throttle = channel_throttle->radio_out;
if ((control_mode == MANUAL || control_mode == LEARNING) &&
(g.skid_steer_out == g.skid_steer_in)) {
// do a direct pass through of radio values
channel_steer->radio_out = channel_steer->read();
channel_throttle->radio_out = channel_throttle->read();
if (failsafe.bits & FAILSAFE_EVENT_THROTTLE) {
// suppress throttle if in failsafe and manual
channel_throttle->radio_out = channel_throttle->radio_trim;
}
} else {
channel_steer->calc_pwm();
channel_throttle->servo_out = constrain_int16(channel_throttle->servo_out,
g.throttle_min.get(),
g.throttle_max.get());
if ((failsafe.bits & FAILSAFE_EVENT_THROTTLE) && control_mode < AUTO) {
// suppress throttle if in failsafe
channel_throttle->servo_out = 0;
}
// convert 0 to 100% into PWM
channel_throttle->calc_pwm();
// limit throttle movement speed
throttle_slew_limit(last_throttle);
if (g.skid_steer_out) {
// convert the two radio_out values to skid steering values
/*
mixing rule:
steering = motor1 - motor2
throttle = 0.5*(motor1 + motor2)
motor1 = throttle + 0.5*steering
motor2 = throttle - 0.5*steering
*/
float steering_scaled = channel_steer->norm_output();
float throttle_scaled = channel_throttle->norm_output();
float motor1 = throttle_scaled + 0.5*steering_scaled;
float motor2 = throttle_scaled - 0.5*steering_scaled;
channel_steer->servo_out = 4500*motor1;
channel_throttle->servo_out = 100*motor2;
channel_steer->calc_pwm();
channel_throttle->calc_pwm();
}
}
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
// send values to the PWM timers for output
// ----------------------------------------
channel_steer->output();
channel_throttle->output();
// Route configurable aux. functions to their respective servos
g.rc_2.output_ch(CH_2);
g.rc_4.output_ch(CH_4);
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
g.rc_7.output_ch(CH_7);
g.rc_8.output_ch(CH_8);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
g.rc_9.output_ch(CH_9);
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 || CONFIG_HAL_BOARD == HAL_BOARD_PX4
g.rc_10.output_ch(CH_10);
g.rc_11.output_ch(CH_11);
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
g.rc_12.output_ch(CH_12);
#endif
#endif
}
static bool demoing_servos;
static void demo_servos(uint8_t i) {
while(i > 0) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
demoing_servos = true;
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
hal.rcout->write(1, 1400);
mavlink_delay(400);
hal.rcout->write(1, 1600);
mavlink_delay(200);
hal.rcout->write(1, 1500);
#endif
demoing_servos = false;
mavlink_delay(400);
i--;
}
}
/*
learning of TURN_CIRCLE in STEERING mode
*/
static void steering_learning(void)
{
/*
only do learning when we are moving at least at 2m/s, and do not
have saturated steering
*/
if (abs(channel_steer->servo_out) >= 4490 ||
abs(channel_steer->servo_out) < 100 ||
g_gps->status() < GPS::GPS_OK_FIX_3D ||
g_gps->ground_speed_cm < 100) {
return;
}
/*
the idea is to slowly adjust the turning circle to bring the
actual and desired turn rates into line
*/
float demanded = lateral_acceleration;
/*
for Y accel use the gyro times the velocity, as that is less
noise sensitive, and is a more direct measure of steering rate,
which is what we are really trying to control
*/
float actual = ins.get_gyro().z * 0.01f * g_gps->ground_speed_cm;
if (fabsf(actual) < 0.1f) {
// too little acceleration to really measure accurately
return;
}
float ratio = demanded/actual;
if (ratio > 1.0f) {
g.turn_circle.set(g.turn_circle * 1.0005f);
} else {
g.turn_circle.set(g.turn_circle * 0.9995f);
}
if (fabs(learning.last_saved_value - g.turn_circle) > 0.05f) {
learning.last_saved_value = g.turn_circle;
g.turn_circle.save();
}
}