ardupilot/libraries/AP_Compass/AP_Compass_Calibration.cpp
Michael du Breuil deec4ec6af Compass: Rework compass calibrator
Summary of significant changes:
  -Autsave doesn't depend on STREAM_EXTRA3
  -Don't risk only saving one compass on copter if CAL_ALWAYS_REBOOT is set
  -Only calibrate compasses that are both health and marked for use (there was a inconsistency in handling the mask)
  -Fix incorrect failure reporting on DO_ACCEPT_MAG_CAL with a mask of 0 if a channel was specifically not started
  -Fix not starting the buzzer if the delay is set to 0 seconds
  -Always send MAG_CAL_REPORT until its acknowledged
  -Correct the field in MAG_CAL_REPORT for autosave to indicate if the compass had actually been saved, rather then being scheduled to be saved
  -Remmove unused public interfaces
2016-10-27 14:04:33 +11:00

344 lines
9.1 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include <AP_Notify/AP_Notify.h>
#include <GCS_MAVLink/GCS.h>
#include "AP_Compass.h"
extern AP_HAL::HAL& hal;
void
Compass::compass_cal_update()
{
bool running = false;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
bool failure;
_calibrator[i].update(failure);
if (failure) {
AP_Notify::events.compass_cal_failed = 1;
}
if (_calibrator[i].check_for_timeout()) {
AP_Notify::events.compass_cal_failed = 1;
cancel_calibration_all();
}
if (_calibrator[i].running()) {
running = true;
} else if (_cal_autosave && !_cal_saved[i] && _calibrator[i].get_status() == COMPASS_CAL_SUCCESS) {
_accept_calibration(i);
}
}
AP_Notify::flags.compass_cal_running = running;
if (is_calibrating()) {
_cal_has_run = true;
return;
} else if (_cal_has_run && _auto_reboot()) {
hal.scheduler->delay(1000);
hal.scheduler->reboot(false);
}
}
bool
Compass::_start_calibration(uint8_t i, bool retry, float delay)
{
if (!healthy(i)) {
return false;
}
if (!use_for_yaw(i)) {
return false;
}
if (!is_calibrating()) {
AP_Notify::events.initiated_compass_cal = 1;
}
if (i == get_primary() && _state[i].external != 0) {
_calibrator[i].set_tolerance(_calibration_threshold);
} else {
// internal compasses or secondary compasses get twice the
// threshold. This is because internal compasses tend to be a
// lot noisier
_calibrator[i].set_tolerance(_calibration_threshold*2);
}
_cal_saved[i] = false;
_calibrator[i].start(retry, delay);
// disable compass learning both for calibration and after completion
_learn.set_and_save(0);
return true;
}
bool
Compass::_start_calibration_mask(uint8_t mask, bool retry, bool autosave, float delay, bool autoreboot)
{
_cal_autosave = autosave;
_compass_cal_autoreboot = autoreboot;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if ((1<<i) & mask) {
if (!_start_calibration(i,retry,delay)) {
_cancel_calibration_mask(mask);
return false;
}
}
}
return true;
}
void
Compass::start_calibration_all(bool retry, bool autosave, float delay, bool autoreboot)
{
_cal_autosave = autosave;
_compass_cal_autoreboot = autoreboot;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
// ignore any compasses that fail to start calibrating
// start all should only calibrate compasses that are being used
_start_calibration(i,retry,delay);
}
}
void
Compass::_cancel_calibration(uint8_t i)
{
AP_Notify::events.initiated_compass_cal = 0;
if (_calibrator[i].running() || _calibrator[i].get_status() == COMPASS_CAL_WAITING_TO_START) {
AP_Notify::events.compass_cal_canceled = 1;
}
_cal_saved[i] = false;
_calibrator[i].clear();
}
void
Compass::_cancel_calibration_mask(uint8_t mask)
{
for(uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if((1<<i) & mask) {
_cancel_calibration(i);
}
}
}
void
Compass::cancel_calibration_all()
{
_cancel_calibration_mask(0xFF);
}
bool
Compass::_accept_calibration(uint8_t i)
{
CompassCalibrator& cal = _calibrator[i];
uint8_t cal_status = cal.get_status();
if (_cal_saved[i] || cal_status == COMPASS_CAL_NOT_STARTED) {
return true;
} else if (cal_status == COMPASS_CAL_SUCCESS) {
_cal_complete_requires_reboot = true;
_cal_saved[i] = true;
Vector3f ofs, diag, offdiag;
cal.get_calibration(ofs, diag, offdiag);
set_and_save_offsets(i, ofs);
set_and_save_diagonals(i,diag);
set_and_save_offdiagonals(i,offdiag);
if (!is_calibrating()) {
AP_Notify::events.compass_cal_saved = 1;
}
return true;
} else {
return false;
}
}
bool
Compass::_accept_calibration_mask(uint8_t mask)
{
bool success = true;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if ((1<<i) & mask) {
if (!_accept_calibration(i)) {
success = false;
}
_calibrator[i].clear();
}
}
return success;
}
void
Compass::send_mag_cal_progress(mavlink_channel_t chan)
{
uint8_t cal_mask = _get_cal_mask();
for (uint8_t compass_id=0; compass_id<COMPASS_MAX_INSTANCES; compass_id++) {
// ensure we don't try to send with no space available
if (!HAVE_PAYLOAD_SPACE(chan, MAG_CAL_PROGRESS)) {
return;
}
auto& calibrator = _calibrator[compass_id];
uint8_t cal_status = calibrator.get_status();
if (cal_status == COMPASS_CAL_WAITING_TO_START ||
cal_status == COMPASS_CAL_RUNNING_STEP_ONE ||
cal_status == COMPASS_CAL_RUNNING_STEP_TWO) {
uint8_t completion_pct = calibrator.get_completion_percent();
auto& completion_mask = calibrator.get_completion_mask();
Vector3f direction(0.0f,0.0f,0.0f);
uint8_t attempt = _calibrator[compass_id].get_attempt();
mavlink_msg_mag_cal_progress_send(
chan,
compass_id, cal_mask,
cal_status, attempt, completion_pct, completion_mask,
direction.x, direction.y, direction.z
);
}
}
}
void Compass::send_mag_cal_report(mavlink_channel_t chan)
{
uint8_t cal_mask = _get_cal_mask();
for (uint8_t compass_id=0; compass_id<COMPASS_MAX_INSTANCES; compass_id++) {
// ensure we don't try to send with no space available
if (!HAVE_PAYLOAD_SPACE(chan, MAG_CAL_REPORT)) {
return;
}
uint8_t cal_status = _calibrator[compass_id].get_status();
if ((cal_status == COMPASS_CAL_SUCCESS ||
cal_status == COMPASS_CAL_FAILED)) {
float fitness = _calibrator[compass_id].get_fitness();
Vector3f ofs, diag, offdiag;
_calibrator[compass_id].get_calibration(ofs, diag, offdiag);
uint8_t autosaved = _cal_saved[compass_id];
mavlink_msg_mag_cal_report_send(
chan,
compass_id, cal_mask,
cal_status, autosaved,
fitness,
ofs.x, ofs.y, ofs.z,
diag.x, diag.y, diag.z,
offdiag.x, offdiag.y, offdiag.z
);
}
}
}
bool
Compass::is_calibrating() const
{
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
switch(_calibrator[i].get_status()) {
case COMPASS_CAL_NOT_STARTED:
case COMPASS_CAL_SUCCESS:
case COMPASS_CAL_FAILED:
break;
default:
return true;
}
}
return false;
}
uint8_t
Compass::_get_cal_mask() const
{
uint8_t cal_mask = 0;
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
if (_calibrator[i].get_status() != COMPASS_CAL_NOT_STARTED) {
cal_mask |= 1 << i;
}
}
return cal_mask;
}
/*
handle an incoming MAG_CAL command
*/
uint8_t Compass::handle_mag_cal_command(const mavlink_command_long_t &packet)
{
uint8_t result = MAV_RESULT_FAILED;
switch (packet.command) {
case MAV_CMD_DO_START_MAG_CAL: {
result = MAV_RESULT_ACCEPTED;
if (hal.util->get_soft_armed()) {
hal.console->println("Disarm for compass calibration");
result = MAV_RESULT_FAILED;
break;
}
if (packet.param1 < 0 || packet.param1 > 255) {
result = MAV_RESULT_FAILED;
break;
}
uint8_t mag_mask = packet.param1;
bool retry = !is_zero(packet.param2);
bool autosave = !is_zero(packet.param3);
float delay = packet.param4;
bool autoreboot = !is_zero(packet.param5);
if (mag_mask == 0) { // 0 means all
start_calibration_all(retry, autosave, delay, autoreboot);
} else {
if (!_start_calibration_mask(mag_mask, retry, autosave, delay, autoreboot)) {
result = MAV_RESULT_FAILED;
}
}
break;
}
case MAV_CMD_DO_ACCEPT_MAG_CAL: {
result = MAV_RESULT_ACCEPTED;
if(packet.param1 < 0 || packet.param1 > 255) {
result = MAV_RESULT_FAILED;
break;
}
uint8_t mag_mask = packet.param1;
if (mag_mask == 0) { // 0 means all
mag_mask = 0xFF;
}
if(!_accept_calibration_mask(mag_mask)) {
result = MAV_RESULT_FAILED;
}
break;
}
case MAV_CMD_DO_CANCEL_MAG_CAL: {
result = MAV_RESULT_ACCEPTED;
if(packet.param1 < 0 || packet.param1 > 255) {
result = MAV_RESULT_FAILED;
break;
}
uint8_t mag_mask = packet.param1;
if (mag_mask == 0) { // 0 means all
cancel_calibration_all();
break;
}
_cancel_calibration_mask(mag_mask);
break;
}
}
return result;
}