ardupilot/libraries/AC_AutoTune/AC_AutoTune_Heli.cpp
2022-02-01 23:06:51 -05:00

732 lines
30 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of helicopters. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell, and rewritten to include helicopters by Bill Geyer
*/
#include "AC_AutoTune_Heli.h"
#define AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD 2000 // target roll/pitch angle during AUTOTUNE FeedForward rate test
#define AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS 5000 // target roll/pitch rate during AUTOTUNE FeedForward rate test
#define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing
#define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
#define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value
#define AUTOTUNE_RLPF_MAX 20.0f // maximum Rate Yaw filter value
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value
#define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value
#define AUTOTUNE_SP_MAX 10.0f // maximum Stab P value
#define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in
void AC_AutoTune_Heli::test_init()
{
if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) {
rate_ff_test_init();
step_time_limit_ms = 10000;
} else if (tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP) {
// initialize start frequency and determine gain function when dwell test is used
if (freq_cnt == 0) {
test_freq[0] = 2.0f * 3.14159f * 2.0f;
curr_test_freq = test_freq[0];
// reset determine_gain function for first use in the event autotune is restarted
determine_gain(0.0f, 0.0f, curr_test_freq, test_gain[freq_cnt], test_phase[freq_cnt], dwell_complete, true);
}
dwell_test_init(curr_test_freq);
if (!is_zero(curr_test_freq)) {
// 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it.
step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * 6.28f / curr_test_freq);
}
} else if (tune_type == SP_UP) {
// initialize start frequency and determine gain function when dwell test is used
if (freq_cnt == 0) {
test_freq[0] = 0.5f * 3.14159f * 2.0f;
curr_test_freq = test_freq[0];
// reset determine_gain function for first use in the event autotune is restarted
determine_gain(0.0f, 0.0f, curr_test_freq, test_gain[freq_cnt], test_phase[freq_cnt], dwell_complete, true);
}
angle_dwell_test_init(curr_test_freq);
if (!is_zero(curr_test_freq)) {
// 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it.
step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * 6.28f / curr_test_freq);
}
} else {
}
start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific
}
void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign)
{
if (tune_type == SP_UP) {
angle_dwell_test_run(curr_test_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) {
rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS);
} else if (tune_type == RP_UP || tune_type == RD_UP) {
dwell_test_run(1, curr_test_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else if (tune_type == MAX_GAINS) {
dwell_test_run(0, curr_test_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
} else {
step = UPDATE_GAINS;
}
}
void AC_AutoTune_Heli::do_gcs_announcements()
{
const uint32_t now = AP_HAL::millis();
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) {
return;
}
float tune_rp = 0.0f;
float tune_rd = 0.0f;
float tune_rff = 0.0f;
float tune_sp = 0.0f;
float tune_accel = 0.0f;
char axis_char = '?';
switch (axis) {
case ROLL:
tune_rp = tune_roll_rp;
tune_rd = tune_roll_rd;
tune_rff = tune_roll_rff;
tune_sp = tune_roll_sp;
tune_accel = tune_roll_accel;
axis_char = 'R';
break;
case PITCH:
tune_rp = tune_pitch_rp;
tune_rd = tune_pitch_rd;
tune_rff = tune_pitch_rff;
tune_sp = tune_pitch_sp;
tune_accel = tune_pitch_accel;
axis_char = 'P';
break;
case YAW:
tune_rp = tune_yaw_rp;
tune_rd = tune_yaw_rd;
tune_rff = tune_yaw_rff;
tune_sp = tune_yaw_sp;
tune_accel = tune_yaw_accel;
axis_char = 'Y';
break;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string());
send_step_string();
switch (tune_type) {
case RD_UP:
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)tune_rd);
break;
case RD_DOWN:
case RP_DOWN:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd);
break;
case RP_UP:
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)tune_rp);
break;
case RFF_UP:
if (!is_zero(test_rate_filt)) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: target=%f rotation=%f command=%f", (double)(test_tgt_rate_filt*57.3f), (double)(test_rate_filt*57.3f), (double)(test_command_filt));
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
break;
case RFF_DOWN:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
break;
case SP_DOWN:
case SP_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel);
break;
case MAX_GAINS:
case TUNE_COMPLETE:
break;
}
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT);
announce_time = now;
}
// load_test_gains - load the to-be-tested gains for a single axis
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
void AC_AutoTune_Heli::load_test_gains()
{
AC_AutoTune::load_test_gains();
switch (axis) {
case ROLL:
if (tune_type == SP_UP) {
attitude_control->get_rate_roll_pid().kI(orig_roll_ri);
} else {
attitude_control->get_rate_roll_pid().kI(0.0f);
}
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(0.0f);
break;
case PITCH:
if (tune_type == SP_UP) {
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri);
} else {
attitude_control->get_rate_pitch_pid().kI(0.0f);
}
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(0.0f);
break;
case YAW:
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f);
attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(0.0f);
break;
}
}
// save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void AC_AutoTune_Heli::save_tuning_gains()
{
AC_AutoTune::save_tuning_gains();
// sanity check the rate P values
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && !is_zero(tune_roll_rp)) {
// rate roll gains
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_rate_roll_pid().kI(tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL);
attitude_control->get_rate_roll_pid().save_gains();
// resave pids to originals in case the autotune is run again
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && !is_zero(tune_pitch_rp)) {
// rate pitch gains
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL);
attitude_control->get_rate_pitch_pid().save_gains();
// resave pids to originals in case the autotune is run again
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
// rate yaw gains
attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
attitude_control->get_rate_yaw_pid().save_gains();
// resave pids to originals in case the autotune is run again
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
}
// update GCS and log save gains event
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS);
reset();
}
// update gains for the rate p up tune type
void AC_AutoTune_Heli::updating_rate_p_up_all(AxisType test_axis)
{
float p_gain = 0.0f;
switch (test_axis) {
case ROLL:
p_gain = tune_roll_rp;
break;
case PITCH:
p_gain = tune_pitch_rp;
break;
case YAW:
p_gain = tune_yaw_rp;
break;
}
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(p_gain));
switch (test_axis) {
case ROLL:
updating_rate_d_up(tune_roll_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
break;
case PITCH:
updating_rate_d_up(tune_pitch_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
break;
case YAW:
updating_rate_d_up(tune_yaw_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
break;
}
}
// update gains for the rate d up tune type
void AC_AutoTune_Heli::updating_rate_d_up_all(AxisType test_axis)
{
float d_gain = 0.0f;
switch (test_axis) {
case ROLL:
d_gain = tune_roll_rd;
break;
case PITCH:
d_gain = tune_pitch_rd;
break;
case YAW:
d_gain = tune_yaw_rd;
break;
}
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(d_gain));
switch (test_axis) {
case ROLL:
updating_rate_d_up(tune_roll_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
break;
case PITCH:
updating_rate_d_up(tune_pitch_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
break;
case YAW:
updating_rate_d_up(tune_yaw_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
break;
}
}
// update gains for the rate ff up tune type
void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_rate_ff_up(tune_roll_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
break;
case PITCH:
updating_rate_ff_up(tune_pitch_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
break;
case YAW:
updating_rate_ff_up(tune_yaw_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
break;
}
}
// update gains for the angle p up tune type
void AC_AutoTune_Heli::updating_angle_p_up_all(AxisType test_axis)
{
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]));
switch (test_axis) {
case ROLL:
updating_angle_p_up(tune_roll_sp, test_freq, test_gain, test_phase, freq_cnt);
break;
case PITCH:
updating_angle_p_up(tune_pitch_sp, test_freq, test_gain, test_phase, freq_cnt);
break;
case YAW:
updating_angle_p_up(tune_yaw_sp, test_freq, test_gain, test_phase, freq_cnt);
break;
}
}
// update gains for the max gain tune type
void AC_AutoTune_Heli::updating_max_gains_all(AxisType test_axis)
{
// announce results of dwell and update
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]));
switch (test_axis) {
case ROLL:
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_roll_rp, tune_roll_rd);
break;
case PITCH:
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_pitch_rp, tune_pitch_rd);
break;
case YAW:
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_yaw_rp, tune_yaw_rd);
break;
}
}
// updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is acheived
void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command)
{
if (ff_up_first_iter) {
if (!is_zero(meas_rate)) {
tune_ff = 5730.0f * meas_command / meas_rate;
}
tune_ff = constrain_float(tune_ff, 0.01, 1);
ff_up_first_iter = false;
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 1.05f * fabsf(rate_target) &&
fabsf(meas_rate) > 0.95f * fabsf(rate_target)) {
counter = AUTOTUNE_SUCCESS_COUNT;
tune_ff = 0.75f * tune_ff;
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) > 1.05f * fabsf(rate_target)) {
tune_ff = 0.98f * tune_ff;
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 0.95f * fabsf(rate_target)) {
tune_ff = 1.02f * tune_ff;
} else {
if (!is_zero(meas_rate)) {
tune_ff = 5730.0f * meas_command / meas_rate;
}
tune_ff = constrain_float(tune_ff, 0.01, 1);
}
}
void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, float gain_incr, float max_gain)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
if (freq_cnt < 12) {
if (freq_cnt == 0) {
freq_cnt_max = 0;
} else if (gain[freq_cnt] > gain[freq_cnt_max]) {
freq_cnt_max = freq_cnt;
}
freq_cnt++;
freq[freq_cnt] = freq[freq_cnt-1] + test_freq_incr;
curr_test_freq = freq[freq_cnt];
} else {
if (gain[freq_cnt] < max_gain) {
tune_p += gain_incr;
curr_test_freq = freq[freq_cnt_max];
freq[freq_cnt] = curr_test_freq;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and freq_cnt for next test
curr_test_freq = freq[0];
freq_cnt = 0;
}
}
// reset determine_gain function
determine_gain(0.0f, 0.0f, curr_test_freq, gain[freq_cnt], phase[freq_cnt], dwell_complete, true);
}
void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
static uint8_t prev_good_frq_cnt;
float max_gain = 1.2f;
if (frq_cnt < 12) {
if (frq_cnt == 0) {
tune_d = max_gain_d.max_allowed * 0.5f;
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) {
prev_good_frq_cnt = frq_cnt;
}
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
freq[frq_cnt] = freq[prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt];
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
} else {
/* if (!is_zero(phase[prev_good_frq_cnt + 1])) {
freq_cnt_max = prev_good_frq_cnt + 2;
} else {
freq_cnt_max = prev_good_frq_cnt + 1;
}
float phase_freq = (180.0f - phase[prev_good_frq_cnt]) / (phase[freq_cnt_max] - phase[prev_good_frq_cnt]);
phase_freq = freq[prev_good_frq_cnt] + phase_freq * (freq[freq_cnt_max] - freq[prev_good_frq_cnt]); */
if (gain[frq_cnt] < max_gain && phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f && tune_d < 0.8f * max_gain_d.max_allowed) {
tune_d += 0.1f * max_gain_d.max_allowed;
} else if (gain[frq_cnt] < max_gain && phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (gain[frq_cnt] < max_gain && phase[frq_cnt] < 160.0f) {
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (gain[frq_cnt] >= max_gain || tune_d > 0.8f * max_gain_d.max_allowed) {
counter = AUTOTUNE_SUCCESS_COUNT;
tune_d = 0.5f * tune_d;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
}
}
// reset determine_gain function
determine_gain(0.0f, 0.0f, curr_test_freq, gain[frq_cnt], phase[frq_cnt], dwell_complete, true);
}
void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
static uint8_t prev_good_frq_cnt;
float max_gain = 1.2f;
if (frq_cnt < 12) {
if (frq_cnt == 0) {
freq_cnt_max = 0;
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
prev_good_frq_cnt = frq_cnt;
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
if (phase[frq_cnt] - 360.0f < 180.0f) {
prev_good_frq_cnt = frq_cnt;
}
// } else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
// frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
freq[frq_cnt] = freq[prev_good_frq_cnt];
curr_test_freq = freq[frq_cnt];
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
} else {
if (gain[frq_cnt] < max_gain && phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) {
tune_p += 0.5f;
} else if (gain[frq_cnt] < max_gain && phase[frq_cnt] > 180.0f) {
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (gain[frq_cnt] < max_gain && phase[frq_cnt] < 160.0f) {
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
freq[frq_cnt] = curr_test_freq;
} else if (gain[frq_cnt] >= max_gain || tune_p > 10.0f) {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
}
}
// reset determine_gain function
determine_gain(0.0f, 0.0f, curr_test_freq, gain[frq_cnt], phase[frq_cnt], dwell_complete, true);
}
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d)
{
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
static uint8_t find_max_p = 0;
static uint8_t find_max_d = 0;
if (frq_cnt < 12) {
if (frq_cnt > 1 && phase[frq_cnt] > 161.0f && phase[frq_cnt] < 200.0f &&
phase[frq_cnt-1] > 90.0f && phase[frq_cnt-1] < 161.0f &&
!is_zero(phase[frq_cnt]) && find_max_p == 0) {
max_gain_p.freq = linear_interpolate(freq[frq_cnt-1],freq[frq_cnt],161.0f,phase[frq_cnt-1],phase[frq_cnt]);
max_gain_p.gain = linear_interpolate(gain[frq_cnt-1],gain[frq_cnt],161.0f,phase[frq_cnt-1],phase[frq_cnt]);
max_gain_p.phase = 161.0f;
max_gain_p.max_allowed = powf(10.0f,-1 * (log10f(max_gain_p.gain) * 20.0f + 2.42) / 20.0f);
find_max_p = 1;
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max rate P freq=%f gain=%f ph=%f rate_d=%f", (double)(max_gain_p.freq), (double)(max_gain_p.gain), (double)(max_gain_p.phase), (double)(max_gain_p.max_allowed));
}
if (frq_cnt > 1 && phase[frq_cnt] > 251.0f && phase[frq_cnt] < 300.0f &&
phase[frq_cnt-1] > 180.0f && phase[frq_cnt-1] < 251.0f &&
!is_zero(phase[frq_cnt]) && find_max_d == 0) {
max_gain_d.freq = linear_interpolate(freq[frq_cnt-1],freq[frq_cnt],251.0f,phase[frq_cnt-1],phase[frq_cnt]);
max_gain_d.gain = linear_interpolate(gain[frq_cnt-1],gain[frq_cnt],251.0f,phase[frq_cnt-1],phase[frq_cnt]);
max_gain_d.phase = 251.0f;
max_gain_d.max_allowed = powf(10.0f,-1 * (log10f(max_gain_d.freq * max_gain_d.gain) * 20.0f + 2.42) / 20.0f);
find_max_d = 1;
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max Rate D freq=%f gain=%f ph=%f rate_d=%f", (double)(max_gain_d.freq), (double)(max_gain_d.gain), (double)(max_gain_d.phase), (double)(max_gain_d.max_allowed));
}
if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
frq_cnt = 11;
}
frq_cnt++;
if (frq_cnt == 12) {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset curr_test_freq and frq_cnt for next test
curr_test_freq = freq[0];
frq_cnt = 0;
tune_p = 0.35f * max_gain_p.max_allowed;
tune_d = 0.25f * max_gain_d.max_allowed;
} else {
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
curr_test_freq = freq[frq_cnt];
}
}
// reset determine_gain function
determine_gain(0.0f, 0.0f, curr_test_freq, gain[frq_cnt], phase[frq_cnt], dwell_complete, true);
}
void AC_AutoTune_Heli::Log_AutoTune()
{
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp);
break;
}
} else {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp);
break;
}
}
}
void AC_AutoTune_Heli::Log_AutoTuneDetails()
{
Log_Write_AutoTuneDetails(command_out, filt_target_rate, rotation_rate);
}
// @LoggerMessage: ATUN
// @Description: Copter/QuadPlane AutoTune
// @Vehicles: Copter, Plane
// @Field: TimeUS: Time since system startup
// @Field: Axis: which axis is currently being tuned
// @Field: TuneStep: step in autotune process
// @Field: Freq: target dwell frequency
// @Field: Gain: measured gain of dwell
// @Field: Phase: measured phase of dwell
// @Field: RFF: new rate gain FF term
// @Field: RP: new rate gain P term
// @Field: RD: new rate gain D term
// @Field: SP: new angle P term
// Write an Autotune data packet
void AC_AutoTune_Heli::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp)
{
AP::logger().Write(
"ATUN",
"TimeUS,Axis,TuneStep,Freq,Gain,Phase,RFF,RP,RD,SP",
"s---------",
"F--000----",
"QBBfffffff",
AP_HAL::micros64(),
axis,
tune_step,
dwell_freq,
meas_gain,
meas_phase,
new_gain_rff,
new_gain_rp,
new_gain_rd,
new_gain_sp);
}
// Write an Autotune data packet
void AC_AutoTune_Heli::Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads)
{
// @LoggerMessage: ATDE
// @Description: AutoTune data packet
// @Field: TimeUS: Time since system startup
// @Field: Cmd: current motor command
// @Field: TRate: current target angular rate
// @Field: Rate: current angular rate
AP::logger().WriteStreaming(
"ATDE",
"TimeUS,Cmd,TRate,Rate",
"s-kk",
"F000",
"Qfff",
AP_HAL::micros64(),
motor_cmd,
tgt_rate_rads*57.3f,
rate_rads*57.3f);
}
// get intra test rate I gain for the specified axis
float AC_AutoTune_Heli::get_intra_test_ri(AxisType test_axis)
{
float ret = 0.0f;
switch (test_axis) {
case ROLL:
ret = orig_roll_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING;
break;
case PITCH:
ret = orig_pitch_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING;
break;
case YAW:
ret = orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING;
break;
}
return ret;
}
// get tuned rate I gain for the specified axis
float AC_AutoTune_Heli::get_tuned_ri(AxisType test_axis)
{
float ret = 0.0f;
switch (test_axis) {
case ROLL:
ret = tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL;
break;
case PITCH:
ret = tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL;
break;
case YAW:
ret = tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL;
break;
}
return ret;
}
// get minimum rate P (for any axis)
float AC_AutoTune_Heli::get_rp_min() const
{
return AUTOTUNE_RP_MIN;
}
// get minimum angle P (for any axis)
float AC_AutoTune_Heli::get_sp_min() const
{
return AUTOTUNE_SP_MIN;
}
// get minimum rate Yaw filter value
float AC_AutoTune_Heli::get_yaw_rate_filt_min() const
{
return AUTOTUNE_RLPF_MIN;
}