ardupilot/libraries/AP_Motors/AP_MotorsMatrix.cpp
NullVoxPopuli 86abf82cc7 Copter: Added support for V-Shaped and A-Shaped VTail Quadcopter frames
Signed-off-by: NullVoxPopuli <LPSego3+dev@gmail.com>
2014-08-18 14:31:54 +09:00

425 lines
16 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsMatrix.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL.h>
#include "AP_MotorsMatrix.h"
extern const AP_HAL::HAL& hal;
// Init
void AP_MotorsMatrix::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// setup the motors
setup_motors();
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// set update rate to motors - a value in hertz
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz )
{
int8_t i;
// record requested speed
_speed_hz = speed_hz;
// check each enabled motor
uint32_t mask = 0;
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
mask |= 1U << pgm_read_byte(&_motor_to_channel_map[i]);
}
}
hal.rcout->set_freq( mask, _speed_hz );
}
// set frame orientation (normally + or X)
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation )
{
// return if nothing has changed
if( new_orientation == _flags.frame_orientation ) {
return;
}
// call parent
AP_Motors::set_frame_orientation( new_orientation );
// setup the motors
setup_motors();
// enable fast channels or instant pwm
set_update_rate(_speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsMatrix::enable()
{
int8_t i;
// enable output channels
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[i]));
}
}
}
// output_min - sends minimum values out to the motors
void AP_MotorsMatrix::output_min()
{
int8_t i;
// set limits flags
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
limit.throttle_upper = false;
// fill the motor_out[] array for HIL use and send minimum value to each motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), _rc_throttle.radio_min);
}
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsMatrix::get_motor_mask()
{
uint16_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
mask |= 1U << i;
}
}
return mask;
}
// output_armed - sends commands to the motors
// includes new scaling stability patch
void AP_MotorsMatrix::output_armed()
{
int8_t i;
int16_t out_min_pwm = _rc_throttle.radio_min + _min_throttle; // minimum pwm value we can send to the motors
int16_t out_max_pwm = _rc_throttle.radio_max; // maximum pwm value we can send to the motors
int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors
int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors
int16_t rpy_low = 0; // lowest motor value
int16_t rpy_high = 0; // highest motor value
int16_t yaw_allowed; // amount of yaw we can fit in
int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided)
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// Throttle is 0 to 1000 only
// To-Do: we should not really be limiting this here because we don't "own" this _rc_throttle object
if (_rc_throttle.servo_out < 0) {
_rc_throttle.servo_out = 0;
limit.throttle_lower = true;
}
if (_rc_throttle.servo_out > _max_throttle) {
_rc_throttle.servo_out = _max_throttle;
limit.throttle_upper = true;
}
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll.calc_pwm();
_rc_pitch.calc_pwm();
_rc_throttle.calc_pwm();
_rc_yaw.calc_pwm();
// if we are not sending a throttle output, we cut the motors
if (_rc_throttle.servo_out == 0) {
// range check spin_when_armed
if (_spin_when_armed_ramped < 0) {
_spin_when_armed_ramped = 0;
}
if (_spin_when_armed_ramped > _min_throttle) {
_spin_when_armed_ramped = _min_throttle;
}
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
// spin motors at minimum
if (motor_enabled[i]) {
motor_out[i] = _rc_throttle.radio_min + _spin_when_armed_ramped;
}
}
// Every thing is limited
limit.roll_pitch = true;
limit.yaw = true;
limit.throttle_lower = true;
} else {
// check if throttle is below limit
if (_rc_throttle.radio_out <= out_min_pwm) { // perhaps being at min throttle itself is not a problem, only being under is
limit.throttle_lower = true;
}
// calculate roll and pitch for each motor
// set rpy_low and rpy_high to the lowest and highest values of the motors
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
rpy_out[i] = _rc_roll.pwm_out * _roll_factor[i] +
_rc_pitch.pwm_out * _pitch_factor[i];
// record lowest roll pitch command
if (rpy_out[i] < rpy_low) {
rpy_low = rpy_out[i];
}
// record highest roll pich command
if (rpy_out[i] > rpy_high) {
rpy_high = rpy_out[i];
}
}
}
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of:
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest)
// 2. the higher of:
// a) the pilot's throttle input
// b) the mid point between the pilot's input throttle and hover-throttle
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this.
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise.
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control)
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it
int16_t motor_mid = (rpy_low+rpy_high)/2;
out_best_thr_pwm = min(out_mid_pwm - motor_mid, max(_rc_throttle.radio_out, (_rc_throttle.radio_out+_hover_out)/2));
// calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller
yaw_allowed = min(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2;
yaw_allowed = max(yaw_allowed, AP_MOTORS_MATRIX_YAW_LOWER_LIMIT_PWM);
if (_rc_yaw.pwm_out >= 0) {
// if yawing right
if (yaw_allowed > _rc_yaw.pwm_out) {
yaw_allowed = _rc_yaw.pwm_out; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
}else{
limit.yaw = true;
}
}else{
// if yawing left
yaw_allowed = -yaw_allowed;
if( yaw_allowed < _rc_yaw.pwm_out ) {
yaw_allowed = _rc_yaw.pwm_out; // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output
}else{
limit.yaw = true;
}
}
// add yaw to intermediate numbers for each motor
rpy_low = 0;
rpy_high = 0;
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
rpy_out[i] = rpy_out[i] +
yaw_allowed * _yaw_factor[i];
// record lowest roll+pitch+yaw command
if( rpy_out[i] < rpy_low ) {
rpy_low = rpy_out[i];
}
// record highest roll+pitch+yaw command
if( rpy_out[i] > rpy_high) {
rpy_high = rpy_out[i];
}
}
}
// check everything fits
thr_adj = _rc_throttle.radio_out - out_best_thr_pwm;
// calc upper and lower limits of thr_adj
int16_t thr_adj_max = max(out_max_pwm-(out_best_thr_pwm+rpy_high),0);
// if we are increasing the throttle (situation #2 above)..
if (thr_adj > 0) {
// increase throttle as close as possible to requested throttle
// without going over out_max_pwm
if (thr_adj > thr_adj_max){
thr_adj = thr_adj_max;
// we haven't even been able to apply full throttle command
limit.throttle_upper = true;
}
}else if(thr_adj < 0){
// decrease throttle as close as possible to requested throttle
// without going under out_min_pwm or over out_max_pwm
// earlier code ensures we can't break both boundaries
int16_t thr_adj_min = min(out_min_pwm-(out_best_thr_pwm+rpy_low),0);
if (thr_adj > thr_adj_max) {
thr_adj = thr_adj_max;
limit.throttle_upper = true;
}
if (thr_adj < thr_adj_min) {
thr_adj = thr_adj_min;
limit.throttle_lower = true;
}
}
// do we need to reduce roll, pitch, yaw command
// earlier code does not allow both limit's to be passed simultainiously with abs(_yaw_factor)<1
if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){
rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low;
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
limit.roll_pitch = true;
limit.yaw = true;
}else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){
rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high;
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling
limit.roll_pitch = true;
limit.yaw = true;
}
// add scaled roll, pitch, constrained yaw and throttle for each motor
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
motor_out[i] = out_best_thr_pwm+thr_adj +
rpy_scale*rpy_out[i];
}
}
// adjust for throttle curve
if (_throttle_curve_enabled) {
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
motor_out[i] = _throttle_curve.get_y(motor_out[i]);
}
}
}
// clip motor output if required (shouldn't be)
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i]) {
motor_out[i] = constrain_int16(motor_out[i], out_min_pwm, out_max_pwm);
}
}
}
// send output to each motor
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
if( motor_enabled[i] ) {
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), motor_out[i]);
}
}
}
// output_disarmed - sends commands to the motors
void AP_MotorsMatrix::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsMatrix::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!_flags.armed) {
return;
}
// loop through all the possible orders spinning any motors that match that description
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
if (motor_enabled[i] && _test_order[i] == motor_seq) {
// turn on this motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[i]), pwm);
}
}
}
// add_motor
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order)
{
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// increment number of motors if this motor is being newly motor_enabled
if( !motor_enabled[motor_num] ) {
motor_enabled[motor_num] = true;
}
// set roll, pitch, thottle factors and opposite motor (for stability patch)
_roll_factor[motor_num] = roll_fac;
_pitch_factor[motor_num] = pitch_fac;
_yaw_factor[motor_num] = yaw_fac;
// set order that motor appears in test
_test_order[motor_num] = testing_order;
// disable this channel from being used by RC_Channel_aux
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[motor_num]);
}
}
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order)
{
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order);
}
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames)
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order)
{
add_motor_raw(
motor_num,
cosf(radians(roll_factor_in_degrees + 90)),
cosf(radians(pitch_factor_in_degrees)),
yaw_factor,
testing_order);
}
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor
void AP_MotorsMatrix::remove_motor(int8_t motor_num)
{
// ensure valid motor number is provided
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) {
// disable the motor, set all factors to zero
motor_enabled[motor_num] = false;
_roll_factor[motor_num] = 0;
_pitch_factor[motor_num] = 0;
_yaw_factor[motor_num] = 0;
}
}
// remove_all_motors - removes all motor definitions
void AP_MotorsMatrix::remove_all_motors()
{
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) {
remove_motor(i);
}
}