ardupilot/libraries/AP_BattMonitor/AP_BattMonitor.h
2018-10-09 00:44:46 +01:00

198 lines
8.7 KiB
C++

#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include "AP_BattMonitor_Params.h"
// maximum number of battery monitors
#define AP_BATT_MONITOR_MAX_INSTANCES 9
// first monitor is always the primary monitor
#define AP_BATT_PRIMARY_INSTANCE 0
#define AP_BATT_SERIAL_NUMBER_DEFAULT -1
#define AP_BATT_MONITOR_TIMEOUT 5000
#define AP_BATT_MONITOR_RES_EST_TC_1 0.5f
#define AP_BATT_MONITOR_RES_EST_TC_2 0.1f
// declare backend class
class AP_BattMonitor_Backend;
class AP_BattMonitor_Analog;
class AP_BattMonitor_SMBus;
class AP_BattMonitor_SMBus_Solo;
class AP_BattMonitor_SMBus_Maxell;
class AP_BattMonitor_UAVCAN;
class AP_BattMonitor
{
friend class AP_BattMonitor_Backend;
friend class AP_BattMonitor_Analog;
friend class AP_BattMonitor_SMBus;
friend class AP_BattMonitor_SMBus_Solo;
friend class AP_BattMonitor_SMBus_Maxell;
friend class AP_BattMonitor_UAVCAN;
public:
// battery failsafes must be defined in levels of severity so that vehicles wont fall backwards
enum BatteryFailsafe {
BatteryFailsafe_None = 0,
BatteryFailsafe_Low,
BatteryFailsafe_Critical
};
FUNCTOR_TYPEDEF(battery_failsafe_handler_fn_t, void, const char *, const int8_t);
AP_BattMonitor(uint32_t log_battery_bit, battery_failsafe_handler_fn_t battery_failsafe_handler_fn, const int8_t *failsafe_priorities);
/* Do not allow copies */
AP_BattMonitor(const AP_BattMonitor &other) = delete;
AP_BattMonitor &operator=(const AP_BattMonitor&) = delete;
static AP_BattMonitor &battery() {
return *_singleton;
}
struct cells {
uint16_t cells[MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN];
};
// The BattMonitor_State structure is filled in by the backend driver
struct BattMonitor_State {
cells cell_voltages; // battery cell voltages in millivolts, 10 cells matches the MAVLink spec
float voltage; // voltage in volts
float current_amps; // current in amperes
float consumed_mah; // total current draw in milliamp hours since start-up
float consumed_wh; // total energy consumed in Wh since start-up
uint32_t last_time_micros; // time when voltage and current was last read in microseconds
uint32_t low_voltage_start_ms; // time when voltage dropped below the minimum in milliseconds
uint32_t critical_voltage_start_ms; // critical voltage failsafe start timer in milliseconds
float temperature; // battery temperature in degrees Celsius
uint32_t temperature_time; // timestamp of the last received temperature message
float voltage_resting_estimate; // voltage with sag removed based on current and resistance estimate in Volt
float resistance; // resistance, in Ohms, calculated by comparing resting voltage vs in flight voltage
BatteryFailsafe failsafe; // stage failsafe the battery is in
bool healthy; // battery monitor is communicating correctly
};
// Return the number of battery monitor instances
uint8_t num_instances(void) const { return _num_instances; }
// detect and initialise any available battery monitors
void init();
/// Read the battery voltage and current for all batteries. Should be called at 10hz
void read();
// healthy - returns true if monitor is functioning
bool healthy(uint8_t instance) const;
bool healthy() const { return healthy(AP_BATT_PRIMARY_INSTANCE); }
/// has_consumed_energy - returns true if battery monitor instance provides consumed energy info
bool has_consumed_energy(uint8_t instance) const;
bool has_consumed_energy() const { return has_consumed_energy(AP_BATT_PRIMARY_INSTANCE); }
/// has_current - returns true if battery monitor instance provides current info
bool has_current(uint8_t instance) const;
bool has_current() const { return has_current(AP_BATT_PRIMARY_INSTANCE); }
/// voltage - returns battery voltage in millivolts
float voltage(uint8_t instance) const;
float voltage() const { return voltage(AP_BATT_PRIMARY_INSTANCE); }
/// get voltage with sag removed (based on battery current draw and resistance)
/// this will always be greater than or equal to the raw voltage
float voltage_resting_estimate(uint8_t instance) const;
float voltage_resting_estimate() const { return voltage_resting_estimate(AP_BATT_PRIMARY_INSTANCE); }
/// current_amps - returns the instantaneous current draw in amperes
float current_amps(uint8_t instance) const;
float current_amps() const { return current_amps(AP_BATT_PRIMARY_INSTANCE); }
/// consumed_mah - returns total current drawn since start-up in milliampere.hours
float consumed_mah(uint8_t instance) const;
float consumed_mah() const { return consumed_mah(AP_BATT_PRIMARY_INSTANCE); }
/// consumed_wh - returns total energy drawn since start-up in watt.hours
float consumed_wh(uint8_t instance) const;
float consumed_wh() const { return consumed_wh(AP_BATT_PRIMARY_INSTANCE); }
/// capacity_remaining_pct - returns the % battery capacity remaining (0 ~ 100)
virtual uint8_t capacity_remaining_pct(uint8_t instance) const;
uint8_t capacity_remaining_pct() const { return capacity_remaining_pct(AP_BATT_PRIMARY_INSTANCE); }
/// pack_capacity_mah - returns the capacity of the battery pack in mAh when the pack is full
int32_t pack_capacity_mah(uint8_t instance) const;
int32_t pack_capacity_mah() const { return pack_capacity_mah(AP_BATT_PRIMARY_INSTANCE); }
/// returns the failsafe state of the battery
BatteryFailsafe check_failsafe(const uint8_t instance);
void check_failsafes(void); // checks all batteries failsafes
/// returns true if a battery failsafe has ever been triggered
bool has_failsafed(void) const { return _has_triggered_failsafe; };
/// returns the highest failsafe action that has been triggered
int8_t get_highest_failsafe_priority(void) const { return _highest_failsafe_priority; };
/// get_type - returns battery monitor type
enum AP_BattMonitor_Params::BattMonitor_Type get_type() { return get_type(AP_BATT_PRIMARY_INSTANCE); }
enum AP_BattMonitor_Params::BattMonitor_Type get_type(uint8_t instance) { return _params[instance].type(); }
/// set_monitoring - sets the monitor type (used for example sketch only)
void set_monitoring(uint8_t instance, uint8_t mon) { _params[instance]._type.set(mon); }
/// true when (voltage * current) > watt_max
bool overpower_detected() const;
bool overpower_detected(uint8_t instance) const;
// cell voltages
bool has_cell_voltages() { return has_cell_voltages(AP_BATT_PRIMARY_INSTANCE); }
bool has_cell_voltages(const uint8_t instance) const;
const cells & get_cell_voltages() const { return get_cell_voltages(AP_BATT_PRIMARY_INSTANCE); }
const cells & get_cell_voltages(const uint8_t instance) const;
// temperature
bool get_temperature(float &temperature) const { return get_temperature(temperature, AP_BATT_PRIMARY_INSTANCE); };
bool get_temperature(float &temperature, const uint8_t instance) const;
// get battery resistance estimate in ohms
float get_resistance() const { return get_resistance(AP_BATT_PRIMARY_INSTANCE); }
float get_resistance(uint8_t instance) const { return state[instance].resistance; }
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
bool arming_checks(size_t buflen, char *buffer) const;
static const struct AP_Param::GroupInfo var_info[];
protected:
/// parameters
AP_BattMonitor_Params _params[AP_BATT_MONITOR_MAX_INSTANCES];
private:
static AP_BattMonitor *_singleton;
BattMonitor_State state[AP_BATT_MONITOR_MAX_INSTANCES];
AP_BattMonitor_Backend *drivers[AP_BATT_MONITOR_MAX_INSTANCES];
uint32_t _log_battery_bit;
uint8_t _num_instances; /// number of monitors
void convert_params(void);
battery_failsafe_handler_fn_t _battery_failsafe_handler_fn;
const int8_t *_failsafe_priorities; // array of failsafe priorities, sorted highest to lowest priority, -1 indicates no more entries
int8_t _highest_failsafe_priority; // highest selected failsafe action level (used to restrict what actions we move into)
bool _has_triggered_failsafe; // true after a battery failsafe has been triggered for the first time
};
namespace AP {
AP_BattMonitor &battery();
};