mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
532 lines
13 KiB
C++
532 lines
13 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*****************************************************************************
|
|
The init_ardupilot function processes everything we need for an in - air restart
|
|
We will determine later if we are actually on the ground and process a
|
|
ground start in that case.
|
|
|
|
*****************************************************************************/
|
|
|
|
#include "Rover.h"
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// This is the help function
|
|
// PSTR is an AVR macro to read strings from flash memory
|
|
// printf_P is a version of print_f that reads from flash memory
|
|
int8_t Rover::main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR("Commands:\n"
|
|
" logs log readback/setup mode\n"
|
|
" setup setup mode\n"
|
|
" test test mode\n"
|
|
"\n"
|
|
"Move the slide switch and reset to FLY.\n"
|
|
"\n"));
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
|
|
static const struct Menu::command main_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", MENU_FUNC(process_logs)},
|
|
{"setup", MENU_FUNC(setup_mode)},
|
|
{"test", MENU_FUNC(test_mode)},
|
|
{"reboot", MENU_FUNC(reboot_board)},
|
|
{"help", MENU_FUNC(main_menu_help)}
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
int8_t Rover::reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
hal.scheduler->reboot(false);
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
void Rover::run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
// disable the failsafe code in the CLI
|
|
hal.scheduler->register_timer_failsafe(NULL,1);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void mavlink_delay_cb_static()
|
|
{
|
|
rover.mavlink_delay_cb();
|
|
}
|
|
|
|
static void failsafe_check_static()
|
|
{
|
|
rover.failsafe_check();
|
|
}
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
AP_ADC_ADS7844 apm1_adc;
|
|
#endif
|
|
|
|
void Rover::init_ardupilot()
|
|
{
|
|
// initialise console serial port
|
|
serial_manager.init_console();
|
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING
|
|
"\n\nFree RAM: %u\n"),
|
|
hal.util->available_memory());
|
|
|
|
//
|
|
// Check the EEPROM format version before loading any parameters from EEPROM.
|
|
//
|
|
|
|
load_parameters();
|
|
|
|
BoardConfig.init();
|
|
|
|
// initialise serial ports
|
|
serial_manager.init();
|
|
|
|
ServoRelayEvents.set_channel_mask(0xFFF0);
|
|
|
|
set_control_channels();
|
|
|
|
battery.init();
|
|
|
|
// keep a record of how many resets have happened. This can be
|
|
// used to detect in-flight resets
|
|
g.num_resets.set_and_save(g.num_resets+1);
|
|
|
|
// init baro before we start the GCS, so that the CLI baro test works
|
|
barometer.init();
|
|
|
|
// init the GCS
|
|
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);
|
|
|
|
// we start by assuming USB connected, as we initialed the serial
|
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
|
|
usb_connected = true;
|
|
check_usb_mux();
|
|
|
|
// setup serial port for telem1
|
|
gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
|
|
|
|
#if MAVLINK_COMM_NUM_BUFFERS > 2
|
|
// setup serial port for telem2
|
|
gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);
|
|
#endif
|
|
|
|
#if MAVLINK_COMM_NUM_BUFFERS > 3
|
|
// setup serial port for fourth telemetry port (not used by default)
|
|
gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);
|
|
#endif
|
|
|
|
// setup frsky telemetry
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
frsky_telemetry.init(serial_manager);
|
|
#endif
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
log_init();
|
|
#endif
|
|
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
apm1_adc.Init(); // APM ADC library initialization
|
|
#endif
|
|
|
|
if (g.compass_enabled==true) {
|
|
if (!compass.init()|| !compass.read()) {
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!"));
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
//compass.get_offsets(); // load offsets to account for airframe magnetic interference
|
|
}
|
|
}
|
|
|
|
// initialise sonar
|
|
init_sonar();
|
|
|
|
// and baro for EKF
|
|
init_barometer();
|
|
|
|
// Do GPS init
|
|
gps.init(&DataFlash, serial_manager);
|
|
|
|
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up the timer libs
|
|
|
|
relay.init();
|
|
|
|
#if MOUNT == ENABLED
|
|
// initialise camera mount
|
|
camera_mount.init(serial_manager);
|
|
#endif
|
|
|
|
/*
|
|
setup the 'main loop is dead' check. Note that this relies on
|
|
the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
|
|
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
// If the switch is in 'menu' mode, run the main menu.
|
|
//
|
|
// Since we can't be sure that the setup or test mode won't leave
|
|
// the system in an odd state, we don't let the user exit the top
|
|
// menu; they must reset in order to fly.
|
|
//
|
|
if (g.cli_enabled == 1) {
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
|
|
cliSerial->println_P(msg);
|
|
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
|
|
gcs[1].get_uart()->println_P(msg);
|
|
}
|
|
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
|
|
gcs[2].get_uart()->println_P(msg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
init_capabilities();
|
|
|
|
startup_ground();
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
|
|
set_mode((enum mode)g.initial_mode.get());
|
|
|
|
// set the correct flight mode
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
}
|
|
|
|
//********************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//********************************************************************************
|
|
void Rover::startup_ground(void)
|
|
{
|
|
set_mode(INITIALISING);
|
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
|
|
|
|
#if(GROUND_START_DELAY > 0)
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
|
|
delay(GROUND_START_DELAY * 1000);
|
|
#endif
|
|
|
|
//IMU ground start
|
|
//------------------------
|
|
//
|
|
|
|
startup_INS_ground();
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
// initialise mission library
|
|
mission.init();
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
// so set serial ports non-blocking once we are ready to drive
|
|
serial_manager.set_blocking_writes_all(false);
|
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
|
|
ins.set_dataflash(&DataFlash);
|
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive."));
|
|
}
|
|
|
|
/*
|
|
set the in_reverse flag
|
|
reset the throttle integrator if this changes in_reverse
|
|
*/
|
|
void Rover::set_reverse(bool reverse)
|
|
{
|
|
if (in_reverse == reverse) {
|
|
return;
|
|
}
|
|
g.pidSpeedThrottle.reset_I();
|
|
in_reverse = reverse;
|
|
}
|
|
|
|
void Rover::set_mode(enum mode mode)
|
|
{
|
|
|
|
if(control_mode == mode){
|
|
// don't switch modes if we are already in the correct mode.
|
|
return;
|
|
}
|
|
|
|
// If we are changing out of AUTO mode reset the loiter timer
|
|
if (control_mode == AUTO)
|
|
loiter_time = 0;
|
|
|
|
control_mode = mode;
|
|
throttle_last = 0;
|
|
throttle = 500;
|
|
set_reverse(false);
|
|
g.pidSpeedThrottle.reset_I();
|
|
|
|
if (control_mode != AUTO) {
|
|
auto_triggered = false;
|
|
}
|
|
|
|
switch(control_mode)
|
|
{
|
|
case MANUAL:
|
|
case HOLD:
|
|
case LEARNING:
|
|
case STEERING:
|
|
break;
|
|
|
|
case AUTO:
|
|
rtl_complete = false;
|
|
restart_nav();
|
|
break;
|
|
|
|
case RTL:
|
|
do_RTL();
|
|
break;
|
|
|
|
case GUIDED:
|
|
rtl_complete = false;
|
|
/*
|
|
when entering guided mode we set the target as the current
|
|
location. This matches the behaviour of the copter code.
|
|
*/
|
|
guided_WP = current_loc;
|
|
set_guided_WP();
|
|
break;
|
|
|
|
default:
|
|
do_RTL();
|
|
break;
|
|
}
|
|
|
|
if (should_log(MASK_LOG_MODE)) {
|
|
DataFlash.Log_Write_Mode(control_mode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
set_mode() wrapper for MAVLink SET_MODE
|
|
*/
|
|
bool Rover::mavlink_set_mode(uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
case HOLD:
|
|
case LEARNING:
|
|
case STEERING:
|
|
case GUIDED:
|
|
case AUTO:
|
|
case RTL:
|
|
set_mode((enum mode)mode);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
called to set/unset a failsafe event.
|
|
*/
|
|
void Rover::failsafe_trigger(uint8_t failsafe_type, bool on)
|
|
{
|
|
uint8_t old_bits = failsafe.bits;
|
|
if (on) {
|
|
failsafe.bits |= failsafe_type;
|
|
} else {
|
|
failsafe.bits &= ~failsafe_type;
|
|
}
|
|
if (old_bits == 0 && failsafe.bits != 0) {
|
|
// a failsafe event has started
|
|
failsafe.start_time = millis();
|
|
}
|
|
if (failsafe.triggered != 0 && failsafe.bits == 0) {
|
|
// a failsafe event has ended
|
|
gcs_send_text_fmt(PSTR("Failsafe ended"));
|
|
}
|
|
|
|
failsafe.triggered &= failsafe.bits;
|
|
|
|
if (failsafe.triggered == 0 &&
|
|
failsafe.bits != 0 &&
|
|
millis() - failsafe.start_time > g.fs_timeout*1000 &&
|
|
control_mode != RTL &&
|
|
control_mode != HOLD) {
|
|
failsafe.triggered = failsafe.bits;
|
|
gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered);
|
|
switch (g.fs_action) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
set_mode(RTL);
|
|
break;
|
|
case 2:
|
|
set_mode(HOLD);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Rover::startup_INS_ground(void)
|
|
{
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC..."));
|
|
mavlink_delay(500);
|
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
|
|
// -----------------------
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move vehicle"));
|
|
mavlink_delay(1000);
|
|
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND);
|
|
|
|
AP_InertialSensor::Start_style style;
|
|
if (g.skip_gyro_cal) {
|
|
style = AP_InertialSensor::WARM_START;
|
|
} else {
|
|
style = AP_InertialSensor::COLD_START;
|
|
}
|
|
|
|
ins.init(style, ins_sample_rate);
|
|
|
|
ahrs.reset();
|
|
}
|
|
|
|
// updates the notify state
|
|
// should be called at 50hz
|
|
void Rover::update_notify()
|
|
{
|
|
notify.update();
|
|
}
|
|
|
|
void Rover::resetPerfData(void) {
|
|
mainLoop_count = 0;
|
|
G_Dt_max = 0;
|
|
perf_mon_timer = millis();
|
|
}
|
|
|
|
|
|
void Rover::check_usb_mux(void)
|
|
{
|
|
bool usb_check = hal.gpio->usb_connected();
|
|
if (usb_check == usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
usb_connected = usb_check;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
// the APM2 has a MUX setup where the first serial port switches
|
|
// between USB and a TTL serial connection. When on USB we use
|
|
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
|
|
// at SERIAL1_BAUD.
|
|
if (usb_connected) {
|
|
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_Console, 0);
|
|
} else {
|
|
serial_manager.set_console_baud(AP_SerialManager::SerialProtocol_MAVLink, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void Rover::print_mode(AP_HAL::BetterStream *port, uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
port->print_P(PSTR("Manual"));
|
|
break;
|
|
case HOLD:
|
|
port->print_P(PSTR("HOLD"));
|
|
break;
|
|
case LEARNING:
|
|
port->print_P(PSTR("Learning"));
|
|
break;
|
|
case STEERING:
|
|
port->print_P(PSTR("Steering"));
|
|
break;
|
|
case AUTO:
|
|
port->print_P(PSTR("AUTO"));
|
|
break;
|
|
case RTL:
|
|
port->print_P(PSTR("RTL"));
|
|
break;
|
|
default:
|
|
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
check a digitial pin for high,low (1/0)
|
|
*/
|
|
uint8_t Rover::check_digital_pin(uint8_t pin)
|
|
{
|
|
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin);
|
|
if (dpin == -1) {
|
|
return 0;
|
|
}
|
|
// ensure we are in input mode
|
|
hal.gpio->pinMode(dpin, HAL_GPIO_INPUT);
|
|
|
|
// enable pullup
|
|
hal.gpio->write(dpin, 1);
|
|
|
|
return hal.gpio->read(dpin);
|
|
}
|
|
|
|
/*
|
|
should we log a message type now?
|
|
*/
|
|
bool Rover::should_log(uint32_t mask)
|
|
{
|
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
|
|
return false;
|
|
}
|
|
bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
|
|
if (ret && !DataFlash.logging_started() && !in_log_download) {
|
|
// we have to set in_mavlink_delay to prevent logging while
|
|
// writing headers
|
|
in_mavlink_delay = true;
|
|
start_logging();
|
|
in_mavlink_delay = false;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
send FrSky telemetry. Should be called at 5Hz by scheduler
|
|
*/
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
void Rover::frsky_telemetry_send(void)
|
|
{
|
|
frsky_telemetry.send_frames((uint8_t)control_mode);
|
|
}
|
|
#endif
|