ardupilot/libraries/AP_IOMCU/iofirmware/iofirmware.cpp
Andrew Tridgell 69c4fb671e AP_IOMCU: optimisations to reduce ISR latency
this speeds up the DMA ISR handlers to reduce the change of losing a
byte on RC input due to loss of an interrupt
2018-11-27 09:38:18 +11:00

716 lines
22 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IOMCU main firmware
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Math/crc.h>
#include "iofirmware.h"
#include "hal.h"
#include <AP_HAL_ChibiOS/RCInput.h>
#include <AP_HAL_ChibiOS/RCOutput.h>
#include "analog.h"
#include "rc.h"
extern const AP_HAL::HAL &hal;
// we build this file with optimisation to lower the interrupt
// latency. This helps reduce the chance of losing an RC input byte
// due to missing a UART interrupt
#pragma GCC optimize("O3")
static AP_IOMCU_FW iomcu;
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
// pending events on the main thread
enum ioevents {
IOEVENT_PWM=1,
};
static struct {
uint32_t num_code_read, num_bad_crc, num_write_pkt, num_unknown_pkt;
uint32_t num_idle_rx, num_dma_complete_rx, num_total_rx, num_rx_error;
} stats;
static void dma_rx_end_cb(UARTDriver *uart)
{
osalSysLockFromISR();
uart->usart->CR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR);
(void)uart->usart->SR;
(void)uart->usart->DR;
(void)uart->usart->DR;
dmaStreamDisable(uart->dmarx);
dmaStreamDisable(uart->dmatx);
iomcu.process_io_packet();
stats.num_total_rx++;
stats.num_dma_complete_rx = stats.num_total_rx - stats.num_idle_rx;
dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet);
dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet));
dmaStreamSetMode(uart->dmarx, uart->dmamode | STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmarx);
uart->usart->CR3 |= USART_CR3_DMAR;
dmaStreamSetMemory0(uart->dmatx, &iomcu.tx_io_packet);
dmaStreamSetTransactionSize(uart->dmatx, iomcu.tx_io_packet.get_size());
dmaStreamSetMode(uart->dmatx, uart->dmamode | STM32_DMA_CR_DIR_M2P |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmatx);
uart->usart->CR3 |= USART_CR3_DMAT;
osalSysUnlockFromISR();
}
static void idle_rx_handler(UARTDriver *uart)
{
volatile uint16_t sr = uart->usart->SR;
if (sr & (USART_SR_LBD | USART_SR_ORE | /* overrun error - packet was too big for DMA or DMA was too slow */
USART_SR_NE | /* noise error - we have lost a byte due to noise */
USART_SR_FE |
USART_SR_PE)) { /* framing error - start/stop bit lost or line break */
/* send a line break - this will abort transmission/reception on the other end */
osalSysLockFromISR();
uart->usart->SR = ~USART_SR_LBD;
uart->usart->CR1 |= USART_CR1_SBK;
stats.num_rx_error++;
uart->usart->CR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR);
(void)uart->usart->SR;
(void)uart->usart->DR;
(void)uart->usart->DR;
dmaStreamDisable(uart->dmarx);
dmaStreamDisable(uart->dmatx);
dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet);
dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet));
dmaStreamSetMode(uart->dmarx, uart->dmamode | STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmarx);
uart->usart->CR3 |= USART_CR3_DMAR;
osalSysUnlockFromISR();
return;
}
if (sr & USART_SR_IDLE) {
dma_rx_end_cb(uart);
stats.num_idle_rx++;
}
}
/*
* UART driver configuration structure.
*/
static UARTConfig uart_cfg = {
nullptr,
nullptr,
dma_rx_end_cb,
nullptr,
nullptr,
idle_rx_handler,
1500000, //1.5MBit
USART_CR1_IDLEIE,
0,
0
};
void setup(void)
{
hal.rcin->init();
hal.rcout->init();
for (uint8_t i = 0; i< 14; i++) {
hal.rcout->enable_ch(i);
}
iomcu.init();
iomcu.calculate_fw_crc();
uartStart(&UARTD2, &uart_cfg);
uartStartReceive(&UARTD2, sizeof(iomcu.rx_io_packet), &iomcu.rx_io_packet);
}
void loop(void)
{
iomcu.update();
}
void AP_IOMCU_FW::init()
{
// the first protocol version must be 4 to allow downgrade to
// old NuttX based firmwares
config.protocol_version = IOMCU_PROTOCOL_VERSION;
config.protocol_version2 = IOMCU_PROTOCOL_VERSION2;
thread_ctx = chThdGetSelfX();
if (palReadLine(HAL_GPIO_PIN_IO_HW_DETECT1) == 1 && palReadLine(HAL_GPIO_PIN_IO_HW_DETECT2) == 0) {
has_heater = true;
}
adc_init();
rcin_serial_init();
// power on spektrum port
palSetLineMode(HAL_GPIO_PIN_SPEKTRUM_PWR_EN, PAL_MODE_OUTPUT_PUSHPULL);
SPEKTRUM_POWER(1);
// we do no allocations after setup completes
reg_status.freemem = hal.util->available_memory();
}
void AP_IOMCU_FW::update()
{
// we are not running any other threads, so we can use an
// immediate timeout here for lowest latency
eventmask_t mask = chEvtWaitAnyTimeout(~0, TIME_IMMEDIATE);
// we get the timestamp once here, and avoid fetching it
// within the DMA callbacks
last_ms = AP_HAL::millis();
loop_counter++;
if (do_reboot && (last_ms > reboot_time)) {
hal.scheduler->reboot(true);
while (true) {}
}
if ((mask & EVENT_MASK(IOEVENT_PWM)) ||
(last_safety_off != reg_status.flag_safety_off)) {
last_safety_off = reg_status.flag_safety_off;
pwm_out_update();
}
uint32_t now = last_ms;
// output SBUS if enabled
if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) &&
reg_status.flag_safety_off &&
now - sbus_last_ms >= sbus_interval_ms) {
// output a new SBUS frame
sbus_last_ms = now;
sbus_out_write(reg_servo.pwm, IOMCU_MAX_CHANNELS);
}
// handle FMU failsafe
if (now - fmu_data_received_time > 200) {
// we are not getting input from the FMU. Fill in failsafe values at 100Hz
if (now - last_failsafe_ms > 10) {
fill_failsafe_pwm();
chEvtSignal(thread_ctx, EVENT_MASK(IOEVENT_PWM));
last_failsafe_ms = now;
}
// turn amber on
AMBER_SET(1);
} else {
last_failsafe_ms = now;
// turn amber off
AMBER_SET(0);
}
// update status page at 20Hz
if (now - last_status_ms > 50) {
last_status_ms = now;
page_status_update();
}
// run remaining functions at 1kHz
if (now != last_loop_ms) {
last_loop_ms = now;
heater_update();
rcin_update();
safety_update();
rcout_mode_update();
rcin_serial_update();
hal.rcout->timer_tick();
if (dsm_bind_state) {
dsm_bind_step();
}
}
}
void AP_IOMCU_FW::pwm_out_update()
{
memcpy(reg_servo.pwm, reg_direct_pwm.pwm, sizeof(reg_direct_pwm));
hal.rcout->cork();
for (uint8_t i = 0; i < SERVO_COUNT; i++) {
if (reg_status.flag_safety_off || (reg_setup.ignore_safety & (1U<<i))) {
hal.rcout->write(i, reg_servo.pwm[i]);
} else {
hal.rcout->write(i, 0);
}
}
hal.rcout->push();
}
void AP_IOMCU_FW::heater_update()
{
uint32_t now = last_ms;
if (!has_heater) {
// use blue LED as heartbeat, run it 4x faster when override active
if (now - last_blue_led_ms > (override_active?125:500)) {
BLUE_TOGGLE();
last_blue_led_ms = now;
}
} else if (reg_setup.heater_duty_cycle == 0 || (now - last_heater_ms > 3000UL)) {
// turn off the heater
HEATER_SET(0);
} else {
uint8_t cycle = ((now / 10UL) % 100U);
HEATER_SET(!(cycle >= reg_setup.heater_duty_cycle));
}
}
void AP_IOMCU_FW::rcin_update()
{
((ChibiOS::RCInput *)hal.rcin)->_timer_tick();
if (hal.rcin->new_input()) {
rc_input.count = hal.rcin->num_channels();
rc_input.flags_rc_ok = true;
for (uint8_t i = 0; i < IOMCU_MAX_CHANNELS; i++) {
rc_input.pwm[i] = hal.rcin->read(i);
}
rc_input.last_input_ms = last_ms;
rc_input.data = (uint16_t)rcprotocol->protocol_detected();
} else if (last_ms - rc_input.last_input_ms > 200U) {
rc_input.flags_rc_ok = false;
}
if (update_rcout_freq) {
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
update_rcout_freq = false;
}
if (update_default_rate) {
hal.rcout->set_default_rate(reg_setup.pwm_defaultrate);
}
bool old_override = override_active;
// check for active override channel
if (mixing.enabled &&
mixing.rc_chan_override > 0 &&
rc_input.flags_rc_ok &&
mixing.rc_chan_override <= IOMCU_MAX_CHANNELS) {
override_active = (rc_input.pwm[mixing.rc_chan_override-1] >= 1750);
} else {
override_active = false;
}
if (old_override != override_active) {
if (override_active) {
fill_failsafe_pwm();
}
chEvtSignal(thread_ctx, EVENT_MASK(IOEVENT_PWM));
}
}
void AP_IOMCU_FW::process_io_packet()
{
uint8_t rx_crc = rx_io_packet.crc;
uint8_t calc_crc;
rx_io_packet.crc = 0;
uint8_t pkt_size = rx_io_packet.get_size();
if (rx_io_packet.code == CODE_READ) {
// allow for more bandwidth efficient read packets
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, 4);
if (calc_crc != rx_crc) {
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size);
}
} else {
calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, pkt_size);
}
if (rx_crc != calc_crc || rx_io_packet.count > PKT_MAX_REGS) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_CORRUPT;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
stats.num_bad_crc++;
return;
}
switch (rx_io_packet.code) {
case CODE_READ: {
stats.num_code_read++;
if (!handle_code_read()) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
}
}
break;
case CODE_WRITE: {
stats.num_write_pkt++;
if (!handle_code_write()) {
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
}
}
break;
default: {
stats.num_unknown_pkt++;
}
break;
}
}
/*
update dynamic elements of status page
*/
void AP_IOMCU_FW::page_status_update(void)
{
if ((reg_setup.features & P_SETUP_FEATURES_SBUS1_OUT) == 0) {
// we can only get VRSSI when sbus is disabled
reg_status.vrssi = adc_sample_vrssi();
} else {
reg_status.vrssi = 0;
}
reg_status.vservo = adc_sample_vservo();
}
bool AP_IOMCU_FW::handle_code_read()
{
uint16_t *values = nullptr;
#define COPY_PAGE(_page_name) \
do { \
values = (uint16_t *)&_page_name; \
tx_io_packet.count = sizeof(_page_name) / sizeof(uint16_t); \
} while(0);
switch (rx_io_packet.page) {
case PAGE_CONFIG:
COPY_PAGE(config);
break;
case PAGE_SETUP:
COPY_PAGE(reg_setup);
break;
case PAGE_RAW_RCIN:
COPY_PAGE(rc_input);
break;
case PAGE_STATUS:
COPY_PAGE(reg_status);
break;
case PAGE_SERVOS:
COPY_PAGE(reg_servo);
break;
default:
return false;
}
/* if the offset is at or beyond the end of the page, we have no data */
if (rx_io_packet.offset + rx_io_packet.count > tx_io_packet.count) {
return false;
}
/* correct the data pointer and count for the offset */
values += rx_io_packet.offset;
tx_io_packet.page = rx_io_packet.page;
tx_io_packet.offset = rx_io_packet.offset;
tx_io_packet.count -= rx_io_packet.offset;
tx_io_packet.count = MIN(tx_io_packet.count, rx_io_packet.count);
tx_io_packet.count = MIN(tx_io_packet.count, PKT_MAX_REGS);
tx_io_packet.code = CODE_SUCCESS;
memcpy(tx_io_packet.regs, values, sizeof(uint16_t)*tx_io_packet.count);
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
bool AP_IOMCU_FW::handle_code_write()
{
switch (rx_io_packet.page) {
case PAGE_SETUP:
switch (rx_io_packet.offset) {
case PAGE_REG_SETUP_ARMING:
reg_setup.arming = rx_io_packet.regs[0];
break;
case PAGE_REG_SETUP_FORCE_SAFETY_OFF:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_off();
reg_status.flag_safety_off = true;
} else {
return false;
}
break;
case PAGE_REG_SETUP_FORCE_SAFETY_ON:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_on();
reg_status.flag_safety_off = false;
} else {
return false;
}
break;
case PAGE_REG_SETUP_ALTRATE:
reg_setup.pwm_altrate = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_PWM_RATE_MASK:
reg_setup.pwm_rates = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_DEFAULTRATE:
if (rx_io_packet.regs[0] < 25 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 25;
}
if (rx_io_packet.regs[0] > 400 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 400;
}
reg_setup.pwm_defaultrate = rx_io_packet.regs[0];
update_default_rate = true;
break;
case PAGE_REG_SETUP_SBUS_RATE:
reg_setup.sbus_rate = rx_io_packet.regs[0];
sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3);
break;
case PAGE_REG_SETUP_FEATURES:
reg_setup.features = rx_io_packet.regs[0];
/* disable the conflicting options with SBUS 1 */
if (reg_setup.features & (P_SETUP_FEATURES_SBUS1_OUT)) {
reg_setup.features &= ~(P_SETUP_FEATURES_PWM_RSSI |
P_SETUP_FEATURES_ADC_RSSI |
P_SETUP_FEATURES_SBUS2_OUT);
// enable SBUS output at specified rate
sbus_interval_ms = MAX(1000U / reg_setup.sbus_rate,3);
// we need to release the JTAG reset pin to be used as a GPIO, otherwise we can't enable
// or disable SBUS out
AFIO->MAPR = AFIO_MAPR_SWJ_CFG_NOJNTRST;
palClearLine(HAL_GPIO_PIN_SBUS_OUT_EN);
} else {
palSetLine(HAL_GPIO_PIN_SBUS_OUT_EN);
}
break;
case PAGE_REG_SETUP_HEATER_DUTY_CYCLE:
reg_setup.heater_duty_cycle = rx_io_packet.regs[0];
last_heater_ms = last_ms;
break;
case PAGE_REG_SETUP_REBOOT_BL:
if (reg_status.flag_safety_off) {
// don't allow reboot while armed
return false;
}
// check the magic value
if (rx_io_packet.regs[0] != REBOOT_BL_MAGIC) {
return false;
}
schedule_reboot(100);
break;
case PAGE_REG_SETUP_IGNORE_SAFETY:
reg_setup.ignore_safety = rx_io_packet.regs[0];
((ChibiOS::RCOutput *)hal.rcout)->set_safety_mask(reg_setup.ignore_safety);
break;
case PAGE_REG_SETUP_DSM_BIND:
if (dsm_bind_state == 0) {
dsm_bind_state = 1;
}
break;
default:
break;
}
break;
case PAGE_DIRECT_PWM: {
if (override_active) {
// no input when override is active
break;
}
/* copy channel data */
uint16_t i = 0, offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_direct_pwm.pwm)/2) {
return false;
}
while ((offset < IOMCU_MAX_CHANNELS) && (num_values > 0)) {
/* XXX range-check value? */
if (rx_io_packet.regs[i] != PWM_IGNORE_THIS_CHANNEL) {
reg_direct_pwm.pwm[offset] = rx_io_packet.regs[i];
}
offset++;
num_values--;
i++;
}
fmu_data_received_time = last_ms;
reg_status.flag_fmu_ok = true;
reg_status.flag_raw_pwm = true;
chEvtSignalI(thread_ctx, EVENT_MASK(IOEVENT_PWM));
break;
}
case PAGE_MIXING: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(mixing)/2) {
return false;
}
memcpy(((uint16_t *)&mixing)+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
case PAGE_SAFETY_PWM: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_safety_pwm.pwm)/2) {
return false;
}
memcpy((&reg_safety_pwm.pwm[0])+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
case PAGE_FAILSAFE_PWM: {
uint16_t offset = rx_io_packet.offset, num_values = rx_io_packet.count;
if (offset + num_values > sizeof(reg_failsafe_pwm.pwm)/2) {
return false;
}
memcpy((&reg_failsafe_pwm.pwm[0])+offset, &rx_io_packet.regs[0], num_values*2);
break;
}
default:
break;
}
tx_io_packet.count = 0;
tx_io_packet.code = CODE_SUCCESS;
tx_io_packet.crc = 0;
tx_io_packet.page = 0;
tx_io_packet.offset = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
void AP_IOMCU_FW::schedule_reboot(uint32_t time_ms)
{
do_reboot = true;
reboot_time = last_ms + time_ms;
}
void AP_IOMCU_FW::calculate_fw_crc(void)
{
#define APP_SIZE_MAX 0xf000
#define APP_LOAD_ADDRESS 0x08001000
// compute CRC of the current firmware
uint32_t sum = 0;
for (unsigned p = 0; p < APP_SIZE_MAX; p += 4) {
uint32_t bytes = *(uint32_t *)(p + APP_LOAD_ADDRESS);
sum = crc_crc32(sum, (const uint8_t *)&bytes, sizeof(bytes));
}
reg_setup.crc[0] = sum & 0xFFFF;
reg_setup.crc[1] = sum >> 16;
}
/*
update safety state
*/
void AP_IOMCU_FW::safety_update(void)
{
uint32_t now = last_ms;
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_INPUT);
if (safety_pressed) {
if (reg_status.flag_safety_off && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_ON)) {
safety_pressed = false;
} else if ((!reg_status.flag_safety_off) && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_OFF)) {
safety_pressed = false;
}
}
if (safety_pressed) {
safety_button_counter++;
} else {
safety_button_counter = 0;
}
if (safety_button_counter == 10) {
// safety has been pressed for 1 second, change state
reg_status.flag_safety_off = !reg_status.flag_safety_off;
}
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = reg_status.flag_safety_off?0xFFFF:0x5500;
palWriteLine(HAL_GPIO_PIN_SAFETY_LED, (led_pattern & (1U << led_counter))?0:1);
}
/*
update hal.rcout mode if needed
*/
void AP_IOMCU_FW::rcout_mode_update(void)
{
bool use_oneshot = (reg_setup.features & P_SETUP_FEATURES_ONESHOT) != 0;
if (use_oneshot && !oneshot_enabled) {
oneshot_enabled = true;
hal.rcout->set_output_mode(reg_setup.pwm_rates, AP_HAL::RCOutput::MODE_PWM_ONESHOT);
}
bool use_brushed = (reg_setup.features & P_SETUP_FEATURES_BRUSHED) != 0;
if (use_brushed && !brushed_enabled) {
brushed_enabled = true;
if (reg_setup.pwm_rates == 0) {
// default to 2kHz for all channels for brushed output
reg_setup.pwm_rates = 0xFF;
reg_setup.pwm_altrate = 2000;
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
}
hal.rcout->set_esc_scaling(1000, 2000);
hal.rcout->set_output_mode(reg_setup.pwm_rates, AP_HAL::RCOutput::MODE_PWM_BRUSHED);
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
}
}
/*
fill in failsafe PWM values
*/
void AP_IOMCU_FW::fill_failsafe_pwm(void)
{
for (uint8_t i=0; i<IOMCU_MAX_CHANNELS; i++) {
if (reg_status.flag_safety_off) {
reg_direct_pwm.pwm[i] = reg_failsafe_pwm.pwm[i];
} else {
reg_direct_pwm.pwm[i] = reg_safety_pwm.pwm[i];
}
}
if (mixing.enabled) {
run_mixer();
}
}
AP_HAL_MAIN();