mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
122 lines
5.4 KiB
Python
122 lines
5.4 KiB
Python
from __future__ import print_function
|
|
|
|
from LogAnalyzer import Test,TestResult
|
|
import DataflashLog
|
|
|
|
# import scipy
|
|
# import pylab #### TEMP!!! only for dev
|
|
# from scipy import signal
|
|
|
|
|
|
class TestDualGyroDrift(Test):
|
|
'''test for gyro drift between dual IMU data'''
|
|
|
|
def __init__(self):
|
|
Test.__init__(self)
|
|
self.name = "Gyro Drift"
|
|
self.enable = False
|
|
|
|
def run(self, logdata, verbose):
|
|
self.result = TestResult()
|
|
self.result.status = TestResult.StatusType.GOOD
|
|
|
|
# if "IMU" not in logdata.channels or "IMU2" not in logdata.channels:
|
|
# self.result.status = TestResult.StatusType.NA
|
|
# return
|
|
|
|
# imuX = logdata.channels["IMU"]["GyrX"].listData
|
|
# imu2X = logdata.channels["IMU2"]["GyrX"].listData
|
|
|
|
# # NOTE: weird thing about Holger's log is that the counts of IMU+IMU2 are different
|
|
# print("length 1: %.2f, length 2: %.2f" % (len(imuX),len(imu2X)))
|
|
# #assert(len(imuX) == len(imu2X))
|
|
|
|
# # divide the curve into segments and get the average of each segment
|
|
# # we will get the diff between those averages, rather than a per-sample diff as the IMU+IMU2 arrays are often not the same length
|
|
# diffThresholdWARN = 0.03
|
|
# diffThresholdFAIL = 0.05
|
|
# nSamples = 10
|
|
# imu1XAverages, imu1YAverages, imu1ZAverages, imu2XAverages, imu2YAverages, imu2ZAverages = ([],[],[],[],[],[])
|
|
# imuXDiffAverages, imuYDiffAverages, imuZDiffAverages = ([],[],[])
|
|
# maxDiffX, maxDiffY, maxDiffZ = (0,0,0)
|
|
# sliceLength1 = len(logdata.channels["IMU"]["GyrX"].dictData.values()) / nSamples
|
|
# sliceLength2 = len(logdata.channels["IMU2"]["GyrX"].dictData.values()) / nSamples
|
|
# for i in range(0,nSamples):
|
|
# imu1XAverages.append(numpy.mean(logdata.channels["IMU"]["GyrX"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
|
|
# imu1YAverages.append(numpy.mean(logdata.channels["IMU"]["GyrY"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
|
|
# imu1ZAverages.append(numpy.mean(logdata.channels["IMU"]["GyrZ"].dictData.values()[i*sliceLength1:i*sliceLength1+sliceLength1]))
|
|
# imu2XAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrX"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
|
|
# imu2YAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrY"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
|
|
# imu2ZAverages.append(numpy.mean(logdata.channels["IMU2"]["GyrZ"].dictData.values()[i*sliceLength2:i*sliceLength2+sliceLength2]))
|
|
# imuXDiffAverages.append(imu2XAverages[-1]-imu1XAverages[-1])
|
|
# imuYDiffAverages.append(imu2YAverages[-1]-imu1YAverages[-1])
|
|
# imuZDiffAverages.append(imu2ZAverages[-1]-imu1ZAverages[-1])
|
|
# if abs(imuXDiffAverages[-1]) > maxDiffX:
|
|
# maxDiffX = imuXDiffAverages[-1]
|
|
# if abs(imuYDiffAverages[-1]) > maxDiffY:
|
|
# maxDiffY = imuYDiffAverages[-1]
|
|
# if abs(imuZDiffAverages[-1]) > maxDiffZ:
|
|
# maxDiffZ = imuZDiffAverages[-1]
|
|
|
|
# if max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdFAIL:
|
|
# self.result.status = TestResult.StatusType.FAIL
|
|
# self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdFAIL
|
|
# elif max(maxDiffX,maxDiffY,maxDiffZ) > diffThresholdWARN:
|
|
# self.result.status = TestResult.StatusType.WARN
|
|
# self.result.statusMessage = "IMU/IMU2 gyro averages differ by more than %s radians" % diffThresholdWARN
|
|
|
|
# # pylab.plot(zip(*imuX)[0], zip(*imuX)[1], 'g')
|
|
# # pylab.plot(zip(*imu2X)[0], zip(*imu2X)[1], 'r')
|
|
|
|
# #pylab.plot(range(0,(nSamples*sliceLength1),sliceLength1), imu1ZAverages, 'b')
|
|
|
|
# print("Gyro averages1X: " + repr(imu1XAverages))
|
|
# print("Gyro averages1Y: " + repr(imu1YAverages))
|
|
# print("Gyro averages1Z: " + repr(imu1ZAverages) + "\n")
|
|
# print("Gyro averages2X: " + repr(imu2XAverages))
|
|
# print("Gyro averages2Y: " + repr(imu2YAverages))
|
|
# print("Gyro averages2Z: " + repr(imu2ZAverages) + "\n")
|
|
# print("Gyro averages diff X: " + repr(imuXDiffAverages))
|
|
# print("Gyro averages diff Y: " + repr(imuYDiffAverages))
|
|
# print("Gyro averages diff Z: " + repr(imuZDiffAverages))
|
|
|
|
# # lowpass filter using numpy
|
|
# # cutoff = 100
|
|
# # fs = 10000.0
|
|
# # b,a = scipy.signal.filter_design.butter(5,cutoff/(fs/2))
|
|
# # imuXFiltered = scipy.signal.filtfilt(b,a,zip(*imuX)[1])
|
|
# # imu2XFiltered = scipy.signal.filtfilt(b,a,zip(*imu2X)[1])
|
|
# #pylab.plot(imuXFiltered, 'r')
|
|
|
|
|
|
# # TMP: DISPLAY BEFORE+AFTER plots
|
|
# pylab.show()
|
|
|
|
# # print("imuX average before lowpass filter: %.8f" % logdata.channels["IMU"]["GyrX"].avg())
|
|
# # print("imuX average after lowpass filter: %.8f" % numpy.mean(imuXFiltered))
|
|
# # print("imu2X average before lowpass filter: %.8f" % logdata.channels["IMU2"]["GyrX"].avg())
|
|
# # print("imu2X average after lowpass filter: %.8f" % numpy.mean(imu2XFiltered))
|
|
|
|
# avg1X = logdata.channels["IMU"]["GyrX"].avg()
|
|
# avg1Y = logdata.channels["IMU"]["GyrY"].avg()
|
|
# avg1Z = logdata.channels["IMU"]["GyrZ"].avg()
|
|
# avg2X = logdata.channels["IMU2"]["GyrX"].avg()
|
|
# avg2Y = logdata.channels["IMU2"]["GyrY"].avg()
|
|
# avg2Z = logdata.channels["IMU2"]["GyrZ"].avg()
|
|
|
|
# avgRatioX = (max(avg1X,avg2X) - min(avg1X,avg2X)) / #abs(max(avg1X,avg2X) / min(avg1X,avg2X))
|
|
# avgRatioY = abs(max(avg1Y,avg2Y) / min(avg1Y,avg2Y))
|
|
# avgRatioZ = abs(max(avg1Z,avg2Z) / min(avg1Z,avg2Z))
|
|
|
|
# self.result.statusMessage = "IMU gyro avg: %.4f,%.4f,%.4f\nIMU2 gyro avg: %.4f,%.4f,%.4f\nAvg ratio: %.4f,%.4f,%.4f" % (avg1X,avg1Y,avg1Z, avg2X,avg2Y,avg2Z, avgRatioX,avgRatioY,avgRatioZ)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|