mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
bf1f27af32
used to fix panic on bad timing
340 lines
12 KiB
C++
340 lines
12 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
helicopter simulator class
|
|
*/
|
|
|
|
#include "SIM_Helicopter.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
namespace SITL {
|
|
|
|
Helicopter::Helicopter(const char *frame_str) :
|
|
Aircraft(frame_str)
|
|
{
|
|
mass = 4.54f;
|
|
|
|
/*
|
|
scaling from motor power to Newtons. Allows the copter
|
|
to hover against gravity when the motor is at hover_throttle
|
|
normalized to hover at 1500RPM at 5 deg collective.
|
|
*/
|
|
thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(157.0f));
|
|
|
|
// calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover
|
|
torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(157.0f));
|
|
|
|
// torque with zero collective pitch. Percentage of total hover torque is based on full scale helicopters.
|
|
torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(157.0f);
|
|
|
|
frame_height = 0.1;
|
|
|
|
if (strstr(frame_str, "-dual")) {
|
|
frame_type = HELI_FRAME_DUAL;
|
|
} else if (strstr(frame_str, "-compound")) {
|
|
frame_type = HELI_FRAME_COMPOUND;
|
|
} else {
|
|
frame_type = HELI_FRAME_CONVENTIONAL;
|
|
}
|
|
gas_heli = (strstr(frame_str, "-gas") != nullptr);
|
|
|
|
ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT;
|
|
lock_step_scheduled = true;
|
|
}
|
|
|
|
/*
|
|
update the helicopter simulation by one time step
|
|
*/
|
|
void Helicopter::update(const struct sitl_input &input)
|
|
{
|
|
const float dt = frame_time_us * 1.0e-6f;
|
|
|
|
// get wind vector setup
|
|
update_wind(input);
|
|
|
|
motor_interlock = input.servos[7] > 1400;
|
|
|
|
float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1);
|
|
float rsc_scale = rsc/rsc_setpoint;
|
|
|
|
float thrust = 0;
|
|
float roll_rate = 0;
|
|
float pitch_rate = 0;
|
|
float yaw_rate = 0;
|
|
float torque_effect_accel = 0;
|
|
float lateral_x_thrust = 0;
|
|
float lateral_y_thrust = 0;
|
|
|
|
|
|
if (_time_delay == 0) {
|
|
for (uint8_t i = 0; i < 6; i++) {
|
|
_servos_delayed[i] = input.servos[i];
|
|
}
|
|
} else if (servos_stored_buffer == nullptr) {
|
|
uint16_t buffer_size = constrain_int16(_time_delay, 1, 100) * 0.001f / dt;
|
|
servos_stored_buffer = new ObjectBuffer<servos_stored>(buffer_size);
|
|
while (servos_stored_buffer->space() != 0) {
|
|
push_to_buffer(input.servos);
|
|
}
|
|
for (uint8_t i = 0; i < 6; i++) {
|
|
_servos_delayed[i] = input.servos[i];
|
|
}
|
|
} else {
|
|
pull_from_buffer(_servos_delayed);
|
|
push_to_buffer(input.servos);
|
|
}
|
|
|
|
float swash1 = (_servos_delayed[0]-1000) / 1000.0f;
|
|
float swash2 = (_servos_delayed[1]-1000) / 1000.0f;
|
|
float swash3 = (_servos_delayed[2]-1000) / 1000.0f;
|
|
|
|
|
|
|
|
Vector3f rot_accel;
|
|
Vector3f air_resistance;
|
|
|
|
switch (frame_type) {
|
|
case HELI_FRAME_CONVENTIONAL: {
|
|
// simulate a traditional helicopter
|
|
|
|
float Ma1s = 522.0f;
|
|
float Lb1s = 922.0f;
|
|
float Mu = 0.003f;
|
|
float Lv = -0.006;
|
|
float Xu = -0.125;
|
|
float Yv = -0.375;
|
|
float Zw = -0.375;
|
|
|
|
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f;
|
|
|
|
// determine RPM
|
|
rpm[0] = update_rpm(motor_interlock, dt);
|
|
|
|
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM
|
|
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f;
|
|
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
|
|
|
// Calculate main rotor torque effect on body
|
|
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz;
|
|
|
|
// Calculate rotor tip path plane angle
|
|
float roll_cyclic = (swash1 - swash2) / cyclic_scalar;
|
|
float pitch_cyclic = ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
|
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
|
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt);
|
|
|
|
float yaw_cmd = 2.0f * tail_rotor - 1.0f; // convert range to -1 to 1
|
|
float tail_rotor_torque = (21.6f * 2.96f * yaw_cmd - 2.96f * gyro.z) * sq(rpm[0] * 0.104667f) / sq(157.0f);
|
|
float tail_rotor_thrust = -1.0f * tail_rotor_torque * izz / tr_dist; //right pedal produces left body accel
|
|
|
|
// rotational acceleration, in rad/s/s, in body frame
|
|
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
|
rot_accel.z = tail_rotor_torque + torque_effect_accel;
|
|
|
|
lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
|
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw);
|
|
|
|
break;
|
|
}
|
|
|
|
case HELI_FRAME_DUAL: {
|
|
// simulate a tandem helicopter
|
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle;
|
|
|
|
float swash4 = (_servos_delayed[3]-1000) / 1000.0f;
|
|
float swash5 = (_servos_delayed[4]-1000) / 1000.0f;
|
|
float swash6 = (_servos_delayed[5]-1000) / 1000.0f;
|
|
|
|
thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f;
|
|
torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6));
|
|
|
|
roll_rate = (swash1-swash2) + (swash4-swash5);
|
|
pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6);
|
|
yaw_rate = (swash1-swash2) + (swash5-swash4);
|
|
|
|
roll_rate *= rsc_scale;
|
|
pitch_rate *= rsc_scale;
|
|
yaw_rate *= rsc_scale;
|
|
|
|
// rotational acceleration, in rad/s/s, in body frame
|
|
rot_accel.x = roll_rate * roll_rate_max;
|
|
rot_accel.y = pitch_rate * pitch_rate_max;
|
|
rot_accel.z = yaw_rate * yaw_rate_max;
|
|
|
|
// rotational air resistance
|
|
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate;
|
|
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate;
|
|
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
|
|
|
|
// torque effect on tail
|
|
rot_accel.z += torque_effect_accel;
|
|
|
|
// air resistance
|
|
air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity);
|
|
|
|
// simulate rotor speed
|
|
rpm[0] = thrust * 1300;
|
|
|
|
// scale thrust to newtons
|
|
thrust *= thrust_scale;
|
|
|
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass);
|
|
accel_body += dcm.transposed() * air_resistance;
|
|
|
|
break;
|
|
}
|
|
|
|
case HELI_FRAME_COMPOUND: {
|
|
// simulate a compound helicopter
|
|
|
|
float Ma1s = 522.0f;
|
|
float Lb1s = 922.0f;
|
|
float Mu = 0.003f;
|
|
float Lv = -0.006;
|
|
float Xu = -0.125;
|
|
float Yv = -0.375;
|
|
float Zw = -0.375;
|
|
|
|
// determine RPM
|
|
rpm[0] = update_rpm(motor_interlock, dt);
|
|
|
|
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM
|
|
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f;
|
|
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
|
|
|
// Calculate main rotor torque effect on body
|
|
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz;
|
|
|
|
// Calculate rotor tip path plane angle
|
|
float roll_cyclic = (swash1 - swash2) / cyclic_scalar;
|
|
float pitch_cyclic = ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
|
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
|
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt);
|
|
|
|
// Calculate thruster yaw and forward thrust effects
|
|
// Thruster command range -1 to 1. Positive is forward thrust for both
|
|
float right_thruster_cmd = 2.0f * (_servos_delayed[3]-1000) / 1000.0f - 1.0f;
|
|
float left_thruster_cmd = 2.0f * (_servos_delayed[4]-1000) / 1000.0f - 1.0f;
|
|
|
|
// assume torque from each thruster only half of normal tailrotor since thrusters 1/2 distance from cg
|
|
float right_thruster_torque = (-0.5f * 21.6f * 2.96f * right_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] * 0.104667f) / sq(157.0f);
|
|
float left_thruster_torque = (0.5f * 21.6f * 2.96f * left_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] * 0.104667f) / sq(157.0f);
|
|
|
|
float right_thruster_force = -1.0f * right_thruster_torque * izz / (0.5f * tr_dist);
|
|
float left_thruster_force = left_thruster_torque * izz / (0.5f * tr_dist);
|
|
|
|
// rotational acceleration, in rad/s/s, in body frame
|
|
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
|
rot_accel.z = right_thruster_torque + left_thruster_torque + torque_effect_accel;
|
|
|
|
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
|
lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
update_dynamics(rot_accel);
|
|
|
|
// update lat/lon/altitude
|
|
update_position();
|
|
time_advance();
|
|
|
|
// update magnetic field
|
|
update_mag_field_bf();
|
|
}
|
|
|
|
void Helicopter::update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt)
|
|
{
|
|
|
|
float tf_inv = 1.0f / 0.07135f;
|
|
float Lfa1s = 0.83641f;
|
|
float Mfb1s = -0.89074f;
|
|
float Lflt = 1.7869f;
|
|
float Lflg = -0.39394f;
|
|
float Mflt = 0.46231f;
|
|
float Mflg = 2.4099f;
|
|
|
|
float b1s_dot = -1 * gyro.x - tf_inv * tpp_angle.x + tf_inv * (Lfa1s * tpp_angle.y + Lflt * ctrl_pos.x + Lflg * ctrl_pos.y);
|
|
float a1s_dot = -1 * gyro.y - tf_inv * tpp_angle.y + tf_inv * (Mfb1s * tpp_angle.x + Mflt * ctrl_pos.x + Mflg * ctrl_pos.y);
|
|
|
|
tpp_angle.x += b1s_dot * dt;
|
|
tpp_angle.y += a1s_dot * dt;
|
|
|
|
}
|
|
|
|
float Helicopter::update_rpm(bool interlock, float dt)
|
|
{
|
|
static float rotor_runup_output;
|
|
float runup_time = 8.0f;
|
|
// ramp speed estimate towards control out
|
|
float runup_increment = dt / runup_time;
|
|
if (interlock) {
|
|
if (rotor_runup_output < 1.0f) {
|
|
rotor_runup_output += runup_increment;
|
|
} else {
|
|
rotor_runup_output = 1.0f;
|
|
}
|
|
}else{
|
|
if (rotor_runup_output > 0.0f) {
|
|
rotor_runup_output -= runup_increment;
|
|
} else {
|
|
rotor_runup_output = 0.0f;
|
|
}
|
|
}
|
|
|
|
return 1500.0f * constrain_float(rotor_runup_output,0.0f,1.0f);
|
|
|
|
}
|
|
|
|
// push servo input to buffer
|
|
void Helicopter::push_to_buffer(const uint16_t servos_input[16])
|
|
{
|
|
servos_stored sample;
|
|
sample.servo1 = servos_input[0];
|
|
sample.servo2 = servos_input[1];
|
|
sample.servo3 = servos_input[2];
|
|
sample.servo4 = servos_input[3];
|
|
sample.servo5 = servos_input[4];
|
|
sample.servo6 = servos_input[5];
|
|
servos_stored_buffer->push(sample);
|
|
|
|
}
|
|
|
|
// pull servo delay from buffer
|
|
void Helicopter::pull_from_buffer(uint16_t servos_delayed[6])
|
|
{
|
|
servos_stored sample;
|
|
if (!servos_stored_buffer->pop(sample)) {
|
|
// no sample
|
|
return;
|
|
}
|
|
servos_delayed[0] = sample.servo1;
|
|
servos_delayed[1] = sample.servo2;
|
|
servos_delayed[2] = sample.servo3;
|
|
servos_delayed[3] = sample.servo4;
|
|
servos_delayed[4] = sample.servo5;
|
|
servos_delayed[5] = sample.servo6;
|
|
|
|
}
|
|
|
|
} // namespace SITL
|