ardupilot/libraries/AP_WheelEncoder/WheelEncoder_SITL_Quadratur...

93 lines
3.4 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "WheelEncoder_SITL_Quadrature.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
AP_WheelEncoder_SITL_Qaudrature::AP_WheelEncoder_SITL_Qaudrature(AP_WheelEncoder &frontend, uint8_t instance, AP_WheelEncoder::WheelEncoder_State &state) :
AP_WheelEncoder_Backend(frontend, instance, state),
_sitl(AP::sitl())
{
}
void AP_WheelEncoder_SITL_Qaudrature::update(void)
{
// earth frame velocity of vehicle in vector form
const Vector2f ef_velocity(_sitl->state.speedN, _sitl->state.speedE);
// store current heading
const double current_heading = _sitl->state.yawDeg;
// transform ef_velocity vector to current_heading frame
// helps to calculate direction of movement
const Vector2f vf_velocity(ef_velocity.x*cos(radians(current_heading)) + ef_velocity.y*sin(radians(current_heading)),
-ef_velocity.x*sin(radians(current_heading)) + ef_velocity.y*cos(radians(current_heading)));
// calculate dt
const uint32_t time_now = AP_HAL::millis();
const double dt = (time_now - _state.last_reading_ms)/1000.0f;
if (is_zero(dt)) { // sanity check
return;
}
// get current speed and turn rate
const double turn_rate = radians(_sitl->state.yawRate);
double speed = norm(vf_velocity.x, vf_velocity.y);
// assign direction to speed value
if (vf_velocity.x < 0.0f) {
speed *= -1;
}
// distance from center of wheel axis to each wheel
const double half_wheelbase = ( fabsf(_frontend.get_pos_offset(0).y) + fabsf(_frontend.get_pos_offset(1).y) )/2.0f;
if (is_zero(half_wheelbase)) {
gcs().send_text(MAV_SEVERITY_WARNING, "WheelEncoder: wheel offset not set!");
}
if (_state.instance == 0) {
speed = speed - turn_rate * half_wheelbase; // for left wheel
} else if (_state.instance == 1) {
speed = speed + turn_rate * half_wheelbase; // for right wheel
} else {
AP_HAL::panic("Invalid wheel encoder instance");
return; // invalid instance
}
const double radius = _frontend.get_wheel_radius(_state.instance);
if (is_zero(radius)) { // avoid divide by zero
gcs().send_text(MAV_SEVERITY_WARNING, "WheelEncoder: wheel radius not set!");
return;
}
// calculate angle turned and corresponding encoder ticks from wheel angular rate
const double angle_turned = ( speed/radius ) * dt;
const int32_t ticks = static_cast<int>( ( angle_turned/(2 * M_PI) ) * _frontend.get_counts_per_revolution(_state.instance) );
// update distance count
_distance_count += ticks;
// update total count of encoder ticks
_total_count += abs(ticks);
// update previous state to current
copy_state_to_frontend(_distance_count, _total_count, 0, time_now);
}
#endif