mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 08:28:30 -04:00
fdd509a7c1
this ensures it is initialised when CLI takeover by MP happens Thanks to Prof Avi Levi for reporting this bug
649 lines
18 KiB
Plaintext
649 lines
18 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*****************************************************************************
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
* We will determine later if we are actually on the ground and process a
|
|
* ground start in that case.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// Functions called from the top-level menu
|
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
|
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
|
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv);
|
|
|
|
// This is the help function
|
|
// PSTR is an AVR macro to read strings from flash memory
|
|
// printf_P is a version of print_f that reads from flash memory
|
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR("Commands:\n"
|
|
" logs log readback/setup mode\n"
|
|
" setup setup mode\n"
|
|
" test test mode\n"
|
|
" reboot reboot to flight mode\n"
|
|
"\n"));
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
static const struct Menu::command main_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", process_logs},
|
|
{"setup", setup_mode},
|
|
{"test", test_mode},
|
|
{"reboot", reboot_board},
|
|
{"help", main_menu_help},
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
reboot_apm();
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
static void run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
// disable the failsafe code in the CLI
|
|
hal.scheduler->register_timer_failsafe(NULL,1);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void init_ardupilot()
|
|
{
|
|
#if USB_MUX_PIN > 0
|
|
// on the APM2 board we have a mux thet switches UART0 between
|
|
// USB and the board header. If the right ArduPPM firmware is
|
|
// installed we can detect if USB is connected using the
|
|
// USB_MUX_PIN
|
|
pinMode(USB_MUX_PIN, INPUT);
|
|
|
|
usb_connected = !digitalRead(USB_MUX_PIN);
|
|
if (!usb_connected) {
|
|
// USB is not connected, this means UART0 may be a Xbee, with
|
|
// its darned bricking problem. We can't write to it for at
|
|
// least one second after powering up. Simplest solution for
|
|
// now is to delay for 1 second. Something more elegant may be
|
|
// added later
|
|
delay(1000);
|
|
}
|
|
#endif
|
|
|
|
// Console serial port
|
|
//
|
|
// The console port buffers are defined to be sufficiently large to support
|
|
// the MAVLink protocol efficiently
|
|
//
|
|
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE);
|
|
|
|
// GPS serial port.
|
|
//
|
|
// standard gps running
|
|
hal.uartB->begin(38400, 256, 16);
|
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
|
|
"\n\nFree RAM: %u\n"),
|
|
memcheck_available_memory());
|
|
|
|
|
|
//
|
|
// Check the EEPROM format version before loading any parameters from EEPROM
|
|
//
|
|
load_parameters();
|
|
|
|
// reset the uartA baud rate after parameter load
|
|
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD));
|
|
|
|
// keep a record of how many resets have happened. This can be
|
|
// used to detect in-flight resets
|
|
g.num_resets.set_and_save(g.num_resets+1);
|
|
|
|
// init baro before we start the GCS, so that the CLI baro test works
|
|
barometer.init();
|
|
|
|
// init the GCS
|
|
gcs0.init(hal.uartA);
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
|
|
|
|
#if USB_MUX_PIN > 0
|
|
if (!usb_connected) {
|
|
// we are not connected via USB, re-init UART0 with right
|
|
// baud rate
|
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
|
|
}
|
|
#else
|
|
// we have a 2nd serial port for telemetry
|
|
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD),
|
|
128, SERIAL_BUFSIZE);
|
|
gcs3.init(hal.uartC);
|
|
#endif
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
DataFlash.Init();
|
|
if (!DataFlash.CardInserted()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted"));
|
|
g.log_bitmask.set(0);
|
|
} else if (DataFlash.NeedErase()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
|
|
do_erase_logs();
|
|
gcs0.reset_cli_timeout();
|
|
}
|
|
if (g.log_bitmask != 0) {
|
|
start_logging();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_ADC == ENABLED
|
|
adc.Init(); // APM ADC library initialization
|
|
#endif
|
|
|
|
if (g.compass_enabled==true) {
|
|
if (!compass.init() || !compass.read()) {
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!"));
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
}
|
|
}
|
|
|
|
// give AHRS the airspeed sensor
|
|
ahrs.set_airspeed(&airspeed);
|
|
|
|
// the axis controllers need access to the AHRS system
|
|
g.rollController.set_ahrs(&ahrs);
|
|
g.pitchController.set_ahrs(&ahrs);
|
|
g.yawController.set_ahrs(&ahrs);
|
|
|
|
// Do GPS init
|
|
g_gps = &g_gps_driver;
|
|
// GPS Initialization
|
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_4G);
|
|
|
|
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav
|
|
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id
|
|
mavlink_system.type = MAV_TYPE_FIXED_WING;
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up the timer libs
|
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
|
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
|
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
|
|
relay.init();
|
|
|
|
#if FENCE_TRIGGERED_PIN > 0
|
|
pinMode(FENCE_TRIGGERED_PIN, OUTPUT);
|
|
digitalWrite(FENCE_TRIGGERED_PIN, LOW);
|
|
#endif
|
|
|
|
/*
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
* the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
|
|
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
|
|
cliSerial->println_P(msg);
|
|
#if USB_MUX_PIN == 0
|
|
hal.uartC->println_P(msg);
|
|
#endif
|
|
|
|
if (ENABLE_AIR_START == 1) {
|
|
// Perform an air start and get back to flying
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<init_ardupilot> AIR START"));
|
|
|
|
// Get necessary data from EEPROM
|
|
//----------------
|
|
//read_EEPROM_airstart_critical();
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
|
|
ins.init(AP_InertialSensor::WARM_START,
|
|
ins_sample_rate,
|
|
flash_leds);
|
|
|
|
// This delay is important for the APM_RC library to work.
|
|
// We need some time for the comm between the 328 and 1280 to be established.
|
|
int old_pulse = 0;
|
|
while (millis()<=1000
|
|
&& (abs(old_pulse - hal.rcin->read(g.flight_mode_channel)) > 5
|
|
|| hal.rcin->read(g.flight_mode_channel) == 1000
|
|
|| hal.rcin->read(g.flight_mode_channel) == 1200))
|
|
{
|
|
old_pulse = hal.rcin->read(g.flight_mode_channel);
|
|
delay(25);
|
|
}
|
|
g_gps->update();
|
|
|
|
if (g.log_bitmask & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_AIRSTART_MSG);
|
|
reload_commands_airstart(); // Get set to resume AUTO from where we left off
|
|
|
|
}else {
|
|
startup_ground();
|
|
if (g.log_bitmask & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
}
|
|
|
|
// choose the nav controller
|
|
set_nav_controller();
|
|
|
|
set_mode(MANUAL);
|
|
|
|
// set the correct flight mode
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
}
|
|
|
|
//********************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//********************************************************************************
|
|
static void startup_ground(void)
|
|
{
|
|
set_mode(INITIALISING);
|
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
|
|
|
|
#if (GROUND_START_DELAY > 0)
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
|
|
delay(GROUND_START_DELAY * 1000);
|
|
#endif
|
|
|
|
// Makes the servos wiggle
|
|
// step 1 = 1 wiggle
|
|
// -----------------------
|
|
demo_servos(1);
|
|
|
|
//INS ground start
|
|
//------------------------
|
|
//
|
|
startup_INS_ground(false);
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio(); // This was commented out as a HACK. Why? I don't find a problem.
|
|
|
|
// Save the settings for in-air restart
|
|
// ------------------------------------
|
|
//save_EEPROM_groundstart();
|
|
|
|
// initialize commands
|
|
// -------------------
|
|
init_commands();
|
|
|
|
// Makes the servos wiggle - 3 times signals ready to fly
|
|
// -----------------------
|
|
demo_servos(3);
|
|
|
|
// reset last heartbeat time, so we don't trigger failsafe on slow
|
|
// startup
|
|
last_heartbeat_ms = millis();
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
// mid-flight, so set the serial ports non-blocking once we are
|
|
// ready to fly
|
|
hal.uartC->set_blocking_writes(false);
|
|
if (gcs3.initialised) {
|
|
hal.uartC->set_blocking_writes(false);
|
|
}
|
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY."));
|
|
}
|
|
|
|
static void set_mode(enum FlightMode mode)
|
|
{
|
|
if(control_mode == mode) {
|
|
// don't switch modes if we are already in the correct mode.
|
|
return;
|
|
}
|
|
if(g.auto_trim > 0 && control_mode == MANUAL)
|
|
trim_control_surfaces();
|
|
|
|
control_mode = mode;
|
|
crash_timer = 0;
|
|
|
|
switch(control_mode)
|
|
{
|
|
case INITIALISING:
|
|
case MANUAL:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case FLY_BY_WIRE_A:
|
|
break;
|
|
|
|
case FLY_BY_WIRE_B:
|
|
target_altitude_cm = current_loc.alt;
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// the altitude to circle at is taken from the current altitude
|
|
next_WP.alt = current_loc.alt;
|
|
break;
|
|
|
|
case AUTO:
|
|
prev_WP = current_loc;
|
|
update_auto();
|
|
break;
|
|
|
|
case RTL:
|
|
prev_WP = current_loc;
|
|
do_RTL();
|
|
break;
|
|
|
|
case LOITER:
|
|
do_loiter_at_location();
|
|
break;
|
|
|
|
case GUIDED:
|
|
set_guided_WP();
|
|
break;
|
|
|
|
default:
|
|
prev_WP = current_loc;
|
|
do_RTL();
|
|
break;
|
|
}
|
|
|
|
// if in an auto-throttle mode, start with throttle suppressed for
|
|
// safety. suppress_throttle() will unsupress it when appropriate
|
|
if (control_mode == CIRCLE || control_mode >= FLY_BY_WIRE_B) {
|
|
throttle_suppressed = true;
|
|
}
|
|
|
|
if (g.log_bitmask & MASK_LOG_MODE)
|
|
Log_Write_Mode(control_mode);
|
|
}
|
|
|
|
static void check_long_failsafe()
|
|
{
|
|
uint32_t tnow = millis();
|
|
// only act on changes
|
|
// -------------------
|
|
if(failsafe != FAILSAFE_LONG && failsafe != FAILSAFE_GCS) {
|
|
if (rc_override_active && tnow - last_heartbeat_ms > FAILSAFE_LONG_TIME) {
|
|
failsafe_long_on_event(FAILSAFE_LONG);
|
|
}
|
|
if(!rc_override_active && failsafe == FAILSAFE_SHORT &&
|
|
(tnow - ch3_failsafe_timer) > FAILSAFE_LONG_TIME) {
|
|
failsafe_long_on_event(FAILSAFE_LONG);
|
|
}
|
|
if (g.gcs_heartbeat_fs_enabled &&
|
|
last_heartbeat_ms != 0 &&
|
|
(tnow - last_heartbeat_ms) > FAILSAFE_LONG_TIME) {
|
|
failsafe_long_on_event(FAILSAFE_GCS);
|
|
}
|
|
} else {
|
|
// We do not change state but allow for user to change mode
|
|
if (failsafe == FAILSAFE_GCS &&
|
|
(tnow - last_heartbeat_ms) < FAILSAFE_SHORT_TIME)
|
|
failsafe = FAILSAFE_NONE;
|
|
if (failsafe == FAILSAFE_LONG && rc_override_active &&
|
|
(tnow - last_heartbeat_ms) < FAILSAFE_SHORT_TIME)
|
|
failsafe = FAILSAFE_NONE;
|
|
if (failsafe == FAILSAFE_LONG && !rc_override_active && !ch3_failsafe)
|
|
failsafe = FAILSAFE_NONE;
|
|
}
|
|
}
|
|
|
|
static void check_short_failsafe()
|
|
{
|
|
// only act on changes
|
|
// -------------------
|
|
if(failsafe == FAILSAFE_NONE) {
|
|
if(ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde
|
|
failsafe_short_on_event(FAILSAFE_SHORT);
|
|
}
|
|
}
|
|
|
|
if(failsafe == FAILSAFE_SHORT) {
|
|
if(!ch3_failsafe) {
|
|
failsafe_short_off_event();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void startup_INS_ground(bool do_accel_init)
|
|
{
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
while (!barometer.healthy) {
|
|
// the barometer becomes healthy when we get the first
|
|
// HIL_STATE message
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message"));
|
|
delay(1000);
|
|
}
|
|
#endif
|
|
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC..."));
|
|
mavlink_delay(500);
|
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
|
|
// -----------------------
|
|
demo_servos(2);
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane"));
|
|
mavlink_delay(1000);
|
|
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate,
|
|
flash_leds);
|
|
if (do_accel_init) {
|
|
ins.init_accel(flash_leds);
|
|
ahrs.set_trim(Vector3f(0, 0, 0));
|
|
}
|
|
ahrs.reset();
|
|
|
|
// read Baro pressure at ground
|
|
//-----------------------------
|
|
init_barometer();
|
|
|
|
if (airspeed.enabled()) {
|
|
// initialize airspeed sensor
|
|
// --------------------------
|
|
zero_airspeed();
|
|
} else {
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed"));
|
|
}
|
|
|
|
digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate INS ready
|
|
digitalWrite(A_LED_PIN, LED_OFF);
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
}
|
|
|
|
|
|
static void update_GPS_light(void)
|
|
{
|
|
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
|
|
// ---------------------------------------------------------------------
|
|
switch (g_gps->status()) {
|
|
case GPS::NO_FIX:
|
|
case GPS::GPS_OK_FIX_2D:
|
|
// check if we've blinked since the last gps update
|
|
if (g_gps->valid_read) {
|
|
g_gps->valid_read = false;
|
|
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
|
|
if (GPS_light) {
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
}else{
|
|
digitalWrite(C_LED_PIN, LED_ON);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GPS::GPS_OK_FIX_3D:
|
|
digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix AND home is set.
|
|
break;
|
|
|
|
default:
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void resetPerfData(void) {
|
|
mainLoop_count = 0;
|
|
G_Dt_max = 0;
|
|
ahrs.renorm_range_count = 0;
|
|
ahrs.renorm_blowup_count = 0;
|
|
gps_fix_count = 0;
|
|
pmTest1 = 0;
|
|
perf_mon_timer = millis();
|
|
}
|
|
|
|
|
|
/*
|
|
* map from a 8 bit EEPROM baud rate to a real baud rate
|
|
*/
|
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
|
|
{
|
|
switch (rate) {
|
|
case 1: return 1200;
|
|
case 2: return 2400;
|
|
case 4: return 4800;
|
|
case 9: return 9600;
|
|
case 19: return 19200;
|
|
case 38: return 38400;
|
|
case 57: return 57600;
|
|
case 111: return 111100;
|
|
case 115: return 115200;
|
|
}
|
|
cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD"));
|
|
return default_baud;
|
|
}
|
|
|
|
|
|
static void check_usb_mux(void)
|
|
{
|
|
#if USB_MUX_PIN > 0
|
|
bool usb_check = !digitalRead(USB_MUX_PIN);
|
|
if (usb_check == usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
usb_connected = usb_check;
|
|
if (usb_connected) {
|
|
hal.uartA->begin(SERIAL0_BAUD);
|
|
} else {
|
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* called by gyro/accel init to flash LEDs so user
|
|
* has some mesmerising lights to watch while waiting
|
|
*/
|
|
void flash_leds(bool on)
|
|
{
|
|
digitalWrite(A_LED_PIN, on ? LED_OFF : LED_ON);
|
|
digitalWrite(C_LED_PIN, on ? LED_ON : LED_OFF);
|
|
}
|
|
|
|
/*
|
|
* Read Vcc vs 1.1v internal reference
|
|
*/
|
|
uint16_t board_voltage(void)
|
|
{
|
|
return vcc_pin->read_latest();
|
|
}
|
|
|
|
|
|
/*
|
|
force a software reset of the APM
|
|
*/
|
|
static void reboot_apm(void)
|
|
{
|
|
hal.scheduler->reboot();
|
|
while (1);
|
|
}
|
|
|
|
|
|
static void
|
|
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
port->print_P(PSTR("Manual"));
|
|
break;
|
|
case CIRCLE:
|
|
port->print_P(PSTR("Circle"));
|
|
break;
|
|
case STABILIZE:
|
|
port->print_P(PSTR("Stabilize"));
|
|
break;
|
|
case TRAINING:
|
|
port->print_P(PSTR("Training"));
|
|
break;
|
|
case FLY_BY_WIRE_A:
|
|
port->print_P(PSTR("FBW_A"));
|
|
break;
|
|
case FLY_BY_WIRE_B:
|
|
port->print_P(PSTR("FBW_B"));
|
|
break;
|
|
case AUTO:
|
|
port->print_P(PSTR("AUTO"));
|
|
break;
|
|
case RTL:
|
|
port->print_P(PSTR("RTL"));
|
|
break;
|
|
case LOITER:
|
|
port->print_P(PSTR("Loiter"));
|
|
break;
|
|
default:
|
|
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void print_comma(void)
|
|
{
|
|
cliSerial->print_P(PSTR(","));
|
|
}
|
|
|
|
|
|
/*
|
|
write to a servo
|
|
*/
|
|
static void servo_write(uint8_t ch, uint16_t pwm)
|
|
{
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
if (!g.hil_servos) {
|
|
extern RC_Channel *rc_ch[8];
|
|
if (ch < 8) {
|
|
rc_ch[ch]->radio_out = pwm;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
hal.rcout->enable_ch(ch);
|
|
hal.rcout->write(ch, pwm);
|
|
}
|