ardupilot/libraries/AP_OpticalFlow/AP_OpticalFlow_ADNS3080_APM2.cpp

537 lines
16 KiB
C++

/*
* AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for Ardupilot Mega
* Code by Randy Mackay. DIYDrones.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* External ADNS3080 OpticalFlow is connected via Serial port 2 (in SPI mode)
* TXD2 = MOSI = pin PH1
* RXD2 = MISO = pin PH0
* XCK2 = SCK = pin PH2
* Chip Select pin is PC4 (33) [PH6 (9)]
* We are using the 16 clocks per conversion timming to increase efficiency (fast)
* The sampling frequency is 400Hz (Timer2 overflow interrupt)
* So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
* we have an 4x oversampling and averaging.
*
* Methods:
* Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
* Read() : Read latest values from OpticalFlow and store to x,y, surface_quality parameters
*
*/
#include "AP_OpticalFlow_ADNS3080.h"
#include "SPI.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define AP_SPI_TIMEOUT 1000
// We use Serial Port 2 in SPI Mode
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define AP_SPI_DATAIN 15 // MISO
#define AP_SPI_DATAOUT 14 // MOSI
#define AP_SPI_CLOCK PJ2 // SCK
#else // normal arduino SPI pins...these need to be checked
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target.
#endif
// mask for saving bit order and data mode to avoid interference with other users of the bus
#define UCSR3C_MASK 0x07
// SPI3 setting for UCSR3C
#define SPI3_MODE_SPI 0xC0 // UMSEL31 = 1, UMSEL30 = 1
// settings for phase and polarity bits of UCSR3C
#define SPI3_MODE_MASK 0x03
#define SPI3_MODE0 0x00
#define SPI3_MODE1 0x01
#define SPI3_MODE2 0x02
#define SPI3_MODE3 0x03
#define SPI3_MODE SPI3_MODE3
// settings for phase and polarity bits of UCSR3C
#define SPI3_ORDER_MASK 0x04
#define SPI3_MSBFIRST 0x00
#define SPI3_LSBFIRST 0x04
#define SPI3_SPEED 0x04 // 2 megahertz?
#define SPI3_DELAY 20 // delay in microseconds after sending data
union NumericIntType
{
int intValue;
unsigned int uintValue;
byte byteValue[2];
};
// Constructors ////////////////////////////////////////////////////////////////
AP_OpticalFlow_ADNS3080_APM2::AP_OpticalFlow_ADNS3080_APM2(int cs_pin, int reset_pin) : _cs_pin(cs_pin), _reset_pin(reset_pin)
{
num_pixels = ADNS3080_PIXELS_X;
field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER;
}
// SPI Methods
// *** INTERNAL FUNCTIONS ***
unsigned char AP_OpticalFlow_ADNS3080_APM2::SPI_transfer(uint8_t data)
{
/* Wait for empty transmit buffer */
while ( !( UCSR3A & (1<<UDRE3)) ) ;
/* Put data into buffer, sends the data */
UDR3 = data;
/* Wait for data to be received */
while ( !(UCSR3A & (1<<RXC3)) ) ;
/* Get and return received data from buffer */
return UDR3;
}
// Public Methods //////////////////////////////////////////////////////////////
// init - initialise sensor
// initCommAPI parameter controls whether SPI interface is initialised (set to false if other devices are on the SPI bus and have already initialised the interface)
bool
AP_OpticalFlow_ADNS3080_APM2::init(bool initCommAPI)
{
int retry = 0;
pinMode(AP_SPI_DATAOUT,OUTPUT);
pinMode(AP_SPI_DATAIN,INPUT);
pinMode(AP_SPI_CLOCK,OUTPUT);
pinMode(_cs_pin,OUTPUT);
if( _reset_pin != 0)
pinMode(ADNS3080_RESET,OUTPUT);
digitalWrite(_cs_pin,HIGH); // disable device (Chip select is active low)
// reset the device
reset();
// start the SPI library:
if( initCommAPI ) {
// Setup Serial Port3 in SPI mode (MSPI), Mode 0, Clock: 8Mhz
UBRR3 = 0;
DDRJ |= (1<<PJ2); // SPI clock XCK3 (PJ2) as output. This enable SPI Master mode
// put UART3 into SPI master mode
UCSR3C = SPI3_MODE_SPI | SPI3_MODE;
// Enable receiver and transmitter.
UCSR3B = (1<<RXEN3)|(1<<TXEN3);
// Set Baud rate
UBRR3 = SPI3_SPEED; // SPI running at 8Mhz
}
delay(10);
// check the sensor is functioning
while( retry < 3 ) {
if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) {
return true;
}
retry++;
}
return false;
}
//
// backup_spi_settings - checks current SPI settings (clock speed, etc), sets values to what we need
//
void AP_OpticalFlow_ADNS3080_APM2::backup_spi_settings()
{
uint8_t temp;
/* Wait for empty transmit buffer */
while ( !( UCSR3A & (1<<UDRE3)) ) ;
// store current spi values
orig_spi_settings_ucsr3c = UCSR3C;
orig_spi_settings_ubrr3 = UBRR3;
// decide new value for UCSR3C
temp = (orig_spi_settings_ucsr3c & ~UCSR3C_MASK) | SPI3_MODE | SPI3_MSBFIRST;
UCSR3C = temp;
UBRR3 = SPI3_SPEED; // SPI running at 1Mhz
}
// restore_spi_settings - restores SPI settings (clock speed, etc) to what their values were before the sensor used the bus
void AP_OpticalFlow_ADNS3080_APM2::restore_spi_settings()
{
/* Wait for empty transmit buffer */
while ( !( UCSR3A & (1<<UDRE3)) ) ;
// restore UCSRC3C and UBRR3
UCSR3C = orig_spi_settings_ucsr3c;
UBRR3 = orig_spi_settings_ubrr3;
}
// Read a register from the sensor
byte
AP_OpticalFlow_ADNS3080_APM2::read_register(byte address)
{
byte result = 0, junk = 0;
backup_spi_settings();
// take the chip select low to select the device
digitalWrite(_cs_pin, LOW);
// send the device the register you want to read:
junk = SPI_transfer(address);
// small delay
delayMicroseconds(SPI3_DELAY);
// send a value of 0 to read the first byte returned:
result = SPI_transfer(0x00);
// take the chip select high to de-select:
digitalWrite(_cs_pin, HIGH);
restore_spi_settings();
return result;
}
// write a value to one of the sensor's registers
void
AP_OpticalFlow_ADNS3080_APM2::write_register(byte address, byte value)
{
byte junk = 0;
backup_spi_settings();
// take the chip select low to select the device
digitalWrite(_cs_pin, LOW);
// send register address
junk = SPI_transfer(address | 0x80 );
// small delay
delayMicroseconds(SPI3_DELAY);
// send data
junk = SPI_transfer(value);
// take the chip select high to de-select:
digitalWrite(_cs_pin, HIGH);
restore_spi_settings();
}
// reset sensor by holding a pin high (or is it low?) for 10us.
void
AP_OpticalFlow_ADNS3080_APM2::reset()
{
// return immediately if the reset pin is not defined
if( _reset_pin == 0)
return;
digitalWrite(_reset_pin,HIGH); // reset sensor
delayMicroseconds(10);
digitalWrite(_reset_pin,LOW); // return sensor to normal
}
// read latest values from sensor and fill in x,y and totals
bool
AP_OpticalFlow_ADNS3080_APM2::update()
{
byte motion_reg;
surface_quality = (unsigned int)read_register(ADNS3080_SQUAL);
delayMicroseconds(SPI3_DELAY); // small delay
// check for movement, update x,y values
motion_reg = read_register(ADNS3080_MOTION);
_overflow = ((motion_reg & 0x10) != 0); // check if we've had an overflow
if( (motion_reg & 0x80) != 0 ) {
raw_dx = ((char)read_register(ADNS3080_DELTA_X));
delayMicroseconds(SPI3_DELAY); // small delay
raw_dy = ((char)read_register(ADNS3080_DELTA_Y));
_motion = true;
}else{
raw_dx = 0;
raw_dy = 0;
}
last_update = millis();
apply_orientation_matrix();
return true;
}
void
AP_OpticalFlow_ADNS3080_APM2::disable_serial_pullup()
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
regVal = (regVal | ADNS3080_SERIALNPU_OFF);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
}
// get_led_always_on - returns true if LED is always on, false if only on when required
bool
AP_OpticalFlow_ADNS3080_APM2::get_led_always_on()
{
return ( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x40) > 0 );
}
// set_led_always_on - set parameter to true if you want LED always on, otherwise false for only when required
void
AP_OpticalFlow_ADNS3080_APM2::set_led_always_on( bool alwaysOn )
{
byte regVal = read_register(ADNS3080_CONFIGURATION_BITS);
regVal = (regVal & 0xbf) | (alwaysOn << 6);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_CONFIGURATION_BITS, regVal);
}
// returns resolution (either 400 or 1600 counts per inch)
int
AP_OpticalFlow_ADNS3080_APM2::get_resolution()
{
if( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x10) == 0 )
return 400;
else
return 1600;
}
// set parameter to 400 or 1600 counts per inch
void
AP_OpticalFlow_ADNS3080_APM2::set_resolution(int resolution)
{
byte regVal = read_register(ADNS3080_CONFIGURATION_BITS);
if( resolution == ADNS3080_RESOLUTION_400 ) {
regVal &= ~0x10;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER;
}else if( resolution == ADNS3080_RESOLUTION_1600) {
regVal |= 0x10;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER * 4;
}
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_CONFIGURATION_BITS, regVal);
// this will affect conversion factors so update them
update_conversion_factors();
}
// get_frame_rate_auto - return whether frame rate is set to "auto" or manual
bool
AP_OpticalFlow_ADNS3080_APM2::get_frame_rate_auto()
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
if( (regVal & 0x01) != 0 ) {
return false;
}else{
return true;
}
}
// set_frame_rate_auto - set frame rate to auto (true) or manual (false)
void
AP_OpticalFlow_ADNS3080_APM2::set_frame_rate_auto(bool auto_frame_rate)
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
delayMicroseconds(SPI3_DELAY); // small delay
if( auto_frame_rate == true ) {
// set specific frame period
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x1A);
delayMicroseconds(SPI3_DELAY); // small delay
// decide what value to update in extended config
regVal = (regVal & ~0x01);
}else{
// decide what value to update in extended config
regVal = (regVal & ~0x01) | 0x01;
}
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
}
// get frame period
unsigned int
AP_OpticalFlow_ADNS3080_APM2::get_frame_period()
{
NumericIntType aNum;
aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER);
delayMicroseconds(SPI3_DELAY); // small delay
aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER);
return aNum.uintValue;
}
// set frame period
void
AP_OpticalFlow_ADNS3080_APM2::set_frame_period(unsigned int period)
{
NumericIntType aNum;
aNum.uintValue = period;
// set frame rate to manual
set_frame_rate_auto(false);
delayMicroseconds(SPI3_DELAY); // small delay
// set specific frame period
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]);
}
unsigned int
AP_OpticalFlow_ADNS3080_APM2::get_frame_rate()
{
unsigned long clockSpeed = ADNS3080_CLOCK_SPEED;
unsigned int rate = clockSpeed / get_frame_period();
return rate;
}
void
AP_OpticalFlow_ADNS3080_APM2::set_frame_rate(unsigned int rate)
{
unsigned long clockSpeed = ADNS3080_CLOCK_SPEED;
unsigned int period = (unsigned int)(clockSpeed / (unsigned long)rate);
set_frame_period(period);
}
// get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual
bool
AP_OpticalFlow_ADNS3080_APM2::get_shutter_speed_auto()
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
if( (regVal & 0x02) > 0 ) {
return false;
}else{
return true;
}
}
// set_shutter_speed_auto - set shutter speed to auto (true), or manual (false)
void
AP_OpticalFlow_ADNS3080_APM2::set_shutter_speed_auto(bool auto_shutter_speed)
{
byte regVal = read_register(ADNS3080_EXTENDED_CONFIG);
delayMicroseconds(SPI3_DELAY); // small delay
if( auto_shutter_speed ) {
// return shutter speed max to default
write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,0x8c);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,0x20);
delayMicroseconds(SPI3_DELAY); // small delay
// determine value to put into extended config
regVal &= ~0x02;
}else{
// determine value to put into extended config
regVal |= 0x02;
}
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
delayMicroseconds(SPI3_DELAY); // small delay
}
// get_shutter_speed_auto - returns true if shutter speed is adjusted automatically, false if manual
unsigned int
AP_OpticalFlow_ADNS3080_APM2::get_shutter_speed()
{
NumericIntType aNum;
aNum.byteValue[1] = read_register(ADNS3080_SHUTTER_UPPER);
delayMicroseconds(SPI3_DELAY); // small delay
aNum.byteValue[0] = read_register(ADNS3080_SHUTTER_LOWER);
return aNum.uintValue;
}
// set_shutter_speed_auto - set shutter speed to auto (true), or manual (false)
void
AP_OpticalFlow_ADNS3080_APM2::set_shutter_speed(unsigned int shutter_speed)
{
NumericIntType aNum;
aNum.uintValue = shutter_speed;
// set shutter speed to manual
set_shutter_speed_auto(false);
delayMicroseconds(SPI3_DELAY); // small delay
// set specific shutter speed
write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,aNum.byteValue[0]);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,aNum.byteValue[1]);
delayMicroseconds(SPI3_DELAY); // small delay
// larger delay
delay(50);
// need to update frame period to cause shutter value to take effect
aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER);
delayMicroseconds(SPI3_DELAY); // small delay
aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]);
delayMicroseconds(SPI3_DELAY); // small delay
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]);
delayMicroseconds(SPI3_DELAY); // small delay
}
// clear_motion - will cause the Delta_X, Delta_Y, and internal motion registers to be cleared
void
AP_OpticalFlow_ADNS3080_APM2::clear_motion()
{
write_register(ADNS3080_MOTION_CLEAR,0xFF); // writing anything to this register will clear the sensor's motion registers
x = 0;
y = 0;
dx = 0;
dy = 0;
_motion = false;
}
// get_pixel_data - captures an image from the sensor and stores it to the pixe_data array
void
AP_OpticalFlow_ADNS3080_APM2::print_pixel_data(Stream *serPort)
{
int i,j;
bool isFirstPixel = true;
byte regValue;
byte pixelValue;
// write to frame capture register to force capture of frame
write_register(ADNS3080_FRAME_CAPTURE,0x83);
// wait 3 frame periods + 10 nanoseconds for frame to be captured
delayMicroseconds(1510); // min frame speed is 2000 frames/second so 1 frame = 500 nano seconds. so 500 x 3 + 10 = 1510
// display the pixel data
for( i=0; i<ADNS3080_PIXELS_Y; i++ ) {
for( j=0; j<ADNS3080_PIXELS_X; j++ ) {
regValue = read_register(ADNS3080_FRAME_CAPTURE);
if( isFirstPixel && (regValue & 0x40) == 0 ) {
serPort->println("failed to find first pixel");
}
isFirstPixel = false;
pixelValue = ( regValue << 2);
serPort->print(pixelValue,DEC);
if( j!= ADNS3080_PIXELS_X-1 )
serPort->print(",");
delayMicroseconds(SPI3_DELAY);
}
serPort->println();
}
// hardware reset to restore sensor to normal operation
reset();
}