5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-16 05:38:28 -04:00
ardupilot/Rover/system.cpp

368 lines
10 KiB
C++

/*****************************************************************************
The init_ardupilot function processes everything we need for an in - air restart
We will determine later if we are actually on the ground and process a
ground start in that case.
*****************************************************************************/
#include "Rover.h"
static void failsafe_check_static()
{
rover.failsafe_check();
}
void Rover::init_ardupilot()
{
#if STATS_ENABLED == ENABLED
// initialise stats module
g2.stats.init();
#endif
BoardConfig.init();
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
can_mgr.init();
#endif
// init gripper
#if AP_GRIPPER_ENABLED
g2.gripper.init();
#endif
// initialise notify system
notify.init();
notify_mode(control_mode);
battery.init();
#if AP_RPM_ENABLED
// Initialise RPM sensor
rpm_sensor.init();
#endif
rssi.init();
g2.windvane.init(serial_manager);
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// setup telem slots with serial ports
gcs().setup_uarts();
#if OSD_ENABLED == ENABLED
osd.init();
#endif
#if HAL_LOGGING_ENABLED
log_init();
#endif
// initialise compass
AP::compass().set_log_bit(MASK_LOG_COMPASS);
AP::compass().init();
#if AP_AIRSPEED_ENABLED
airspeed.set_log_bit(MASK_LOG_IMU);
#endif
// initialise rangefinder
rangefinder.set_log_rfnd_bit(MASK_LOG_RANGEFINDER);
rangefinder.init(ROTATION_NONE);
#if HAL_PROXIMITY_ENABLED
// init proximity sensor
g2.proximity.init();
#endif
#if AP_BEACON_ENABLED
// init beacons used for non-gps position estimation
g2.beacon.init();
#endif
// and baro for EKF
barometer.set_log_baro_bit(MASK_LOG_IMU);
barometer.calibrate();
// Do GPS init
gps.set_log_gps_bit(MASK_LOG_GPS);
gps.init(serial_manager);
ins.set_log_raw_bit(MASK_LOG_IMU_RAW);
init_rc_in(); // sets up rc channels deadzone
g2.motors.init(get_frame_type()); // init motors including setting servo out channels ranges
SRV_Channels::enable_aux_servos();
// init wheel encoders
g2.wheel_encoder.init();
#if HAL_TORQEEDO_ENABLED
// init torqeedo motor driver
g2.torqeedo.init();
#endif
#if AP_OPTICALFLOW_ENABLED
// initialise optical flow sensor
optflow.init(MASK_LOG_OPTFLOW);
#endif // AP_OPTICALFLOW_ENABLED
#if AP_RELAY_ENABLED
relay.init();
#endif
#if HAL_MOUNT_ENABLED
// initialise camera mount
camera_mount.init();
#endif
#if AP_CAMERA_ENABLED
// initialise camera
camera.init();
#endif
#if AC_PRECLAND_ENABLED
// initialise precision landing
init_precland();
#endif
/*
setup the 'main loop is dead' check. Note that this relies on
the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// initialize SmartRTL
g2.smart_rtl.init();
// initialise object avoidance
g2.oa.init();
startup_ground();
Mode *initial_mode = mode_from_mode_num((enum Mode::Number)g.initial_mode.get());
if (initial_mode == nullptr) {
initial_mode = &mode_initializing;
}
set_mode(*initial_mode, ModeReason::INITIALISED);
// initialise rc channels
rc().convert_options(RC_Channel::AUX_FUNC::ARMDISARM_UNUSED, RC_Channel::AUX_FUNC::ARMDISARM);
rc().convert_options(RC_Channel::AUX_FUNC::SAVE_TRIM, RC_Channel::AUX_FUNC::TRIM_TO_CURRENT_SERVO_RC);
rc().init();
rover.g2.sailboat.init();
// boat should loiter after completing a mission to avoid drifting off
if (is_boat()) {
rover.g2.mis_done_behave.set_default(ModeAuto::Mis_Done_Behave::MIS_DONE_BEHAVE_LOITER);
}
// flag that initialisation has completed
initialised = true;
}
//*********************************************************************************
// This function does all the calibrations, etc. that we need during a ground start
//*********************************************************************************
void Rover::startup_ground(void)
{
set_mode(mode_initializing, ModeReason::INITIALISED);
// IMU ground start
//------------------------
//
startup_INS_ground();
// initialise mission library
mode_auto.mission.init();
// initialise AP_Logger library
#if HAL_LOGGING_ENABLED
logger.setVehicle_Startup_Writer(
FUNCTOR_BIND(&rover, &Rover::Log_Write_Vehicle_Startup_Messages, void)
);
#endif
#if AP_SCRIPTING_ENABLED
g2.scripting.init();
#endif // AP_SCRIPTING_ENABLED
}
// update the ahrs flyforward setting which can allow
// the vehicle's movements to be used to estimate heading
void Rover::update_ahrs_flyforward()
{
bool flyforward = false;
// boats never use movement to estimate heading
if (!is_boat()) {
// throttle threshold is 15% or 1/2 cruise throttle
bool throttle_over_thresh = g2.motors.get_throttle() > MIN(g.throttle_cruise * 0.50f, 15.0f);
// desired speed threshold of 1m/s
bool desired_speed_over_thresh = g2.attitude_control.speed_control_active() && (g2.attitude_control.get_desired_speed() > 0.5f);
if (throttle_over_thresh || (is_positive(g2.motors.get_throttle()) && desired_speed_over_thresh)) {
uint32_t now = AP_HAL::millis();
// if throttle over threshold start timer
if (flyforward_start_ms == 0) {
flyforward_start_ms = now;
}
// if throttle over threshold for 2 seconds set flyforward to true
flyforward = (now - flyforward_start_ms > 2000);
} else {
// reset timer
flyforward_start_ms = 0;
}
}
ahrs.set_fly_forward(flyforward);
}
// Check if this mode can be entered from the GCS
bool Rover::gcs_mode_enabled(const Mode::Number mode_num) const
{
// List of modes that can be blocked, index is bit number in parameter bitmask
static const uint8_t mode_list [] {
(uint8_t)Mode::Number::MANUAL,
(uint8_t)Mode::Number::ACRO,
(uint8_t)Mode::Number::STEERING,
(uint8_t)Mode::Number::LOITER,
(uint8_t)Mode::Number::FOLLOW,
(uint8_t)Mode::Number::SIMPLE,
(uint8_t)Mode::Number::CIRCLE,
(uint8_t)Mode::Number::AUTO,
(uint8_t)Mode::Number::RTL,
(uint8_t)Mode::Number::SMART_RTL,
(uint8_t)Mode::Number::GUIDED,
#if MODE_DOCK_ENABLED == ENABLED
(uint8_t)Mode::Number::DOCK
#endif
};
return !block_GCS_mode_change((uint8_t)mode_num, mode_list, ARRAY_SIZE(mode_list));
}
bool Rover::set_mode(Mode &new_mode, ModeReason reason)
{
if (control_mode == &new_mode) {
// don't switch modes if we are already in the correct mode.
return true;
}
// Check if GCS mode change is disabled via parameter
if ((reason == ModeReason::GCS_COMMAND) && !gcs_mode_enabled((Mode::Number)new_mode.mode_number())) {
gcs().send_text(MAV_SEVERITY_NOTICE,"Mode change to %s denied, GCS entry disabled (FLTMODE_GCSBLOCK)", new_mode.name4());
return false;
}
Mode &old_mode = *control_mode;
if (!new_mode.enter()) {
// Log error that we failed to enter desired flight mode
LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE,
LogErrorCode(new_mode.mode_number()));
gcs().send_text(MAV_SEVERITY_WARNING, "Flight mode change failed");
return false;
}
control_mode = &new_mode;
#if AP_FENCE_ENABLED
// pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover
// this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe)
// but it should be harmless to disable the fence temporarily in these situations as well
fence.manual_recovery_start();
#endif
#if AP_CAMERA_ENABLED
camera.set_is_auto_mode(control_mode->mode_number() == Mode::Number::AUTO);
#endif
old_mode.exit();
control_mode_reason = reason;
#if HAL_LOGGING_ENABLED
logger.Write_Mode((uint8_t)control_mode->mode_number(), control_mode_reason);
#endif
gcs().send_message(MSG_HEARTBEAT);
notify_mode(control_mode);
return true;
}
bool Rover::set_mode(const uint8_t new_mode, ModeReason reason)
{
static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number");
return rover.set_mode(static_cast<Mode::Number>(new_mode), reason);
}
bool Rover::set_mode(Mode::Number new_mode, ModeReason reason)
{
Mode *mode = rover.mode_from_mode_num(new_mode);
if (mode == nullptr) {
notify_no_such_mode((uint8_t)new_mode);
return false;
}
return rover.set_mode(*mode, reason);
}
void Rover::startup_INS_ground(void)
{
gcs().send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle");
hal.scheduler->delay(100);
ahrs.init();
// say to EKF that rover only move by going forward
ahrs.set_fly_forward(true);
ahrs.set_vehicle_class(AP_AHRS::VehicleClass::GROUND);
ins.init(scheduler.get_loop_rate_hz());
ahrs.reset();
}
// update notify with mode change
void Rover::notify_mode(const Mode *mode)
{
AP_Notify::flags.autopilot_mode = mode->is_autopilot_mode();
notify.flags.flight_mode = (uint8_t)mode->mode_number();
notify.set_flight_mode_str(mode->name4());
}
/*
check a digital pin for high,low (1/0)
*/
uint8_t Rover::check_digital_pin(uint8_t pin)
{
// ensure we are in input mode
hal.gpio->pinMode(pin, HAL_GPIO_INPUT);
// enable pullup
hal.gpio->write(pin, 1);
return hal.gpio->read(pin);
}
#if HAL_LOGGING_ENABLED
/*
should we log a message type now?
*/
bool Rover::should_log(uint32_t mask)
{
return logger.should_log(mask);
}
#endif
// returns true if vehicle is a boat
// this affects whether the vehicle tries to maintain position after reaching waypoints
bool Rover::is_boat() const
{
return ((enum frame_class)g2.frame_class.get() == FRAME_BOAT);
}
#include <AP_Avoidance/AP_Avoidance.h>
#include <AP_ADSB/AP_ADSB.h>
#if HAL_ADSB_ENABLED
// dummy method to avoid linking AP_Avoidance
AP_Avoidance *AP::ap_avoidance() { return nullptr; }
#endif