mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-16 13:48:29 -04:00
622217357c
This is a fix for an interesting bug when a DCM matrix reset was added to the ground start. This bug only showed up if (A) a ground start were performed after an air start or due to use of the "Calibrate Gryo" action, (B) if the current orientation were sufficiently different from 0/0/0, and (C.) if the particular magnetometer had sufficiently large offsets. Why did resetting the DCM matrix to 0/0/0 pitch/roll/yaw at ground start cause a bug? The magnetometer offset nulling determines the proper offsets for the magnetometer by comparing the observed change in the magnetic field vector with the expected change due to rotation as calculated from the rotation in the DCM matrix. This comparison is made at 10Hz, and then filtered with a weight based on the amount of rotation to estimate the offsets. Normally it would take considerable time at normal in-flight rotation rates for the offset estimate to converge. If a DCM matrix reset occurs when the offset nulling algorithm is up and running, the algorithm sees the DCM reset as a instantaneous rotation, however the magnetic field vector did not change at all. Under certain conditions the algorithm would interpret this as indicating that the offset(s) should be very large. Since the "rotation" could also have been large the filter weighting would be large and it was possible for a large erroneous estimate of the offset(s) to be made based on this single (bad) data point. To fix this bug methods were added to the compass object to start and stop the offset nulling algorithm. Further, when the algorithm is started, it is set up to get fresh samples. The DCM matrix reset method now calls these new methods to stop the offset nulling before resetting the matrix, and resume after the matrix has been reset.
743 lines
18 KiB
Plaintext
743 lines
18 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// These are function definitions so the Menu can be constructed before the functions
|
|
// are defined below. Order matters to the compiler.
|
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_passthru(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
|
|
#if CONFIG_ADC == ENABLED
|
|
static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
|
|
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv);
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
static int8_t test_dipswitches(uint8_t argc, const Menu::arg *argv);
|
|
#endif
|
|
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
|
|
|
|
// Creates a constant array of structs representing menu options
|
|
// and stores them in Flash memory, not RAM.
|
|
// User enters the string in the console to call the functions on the right.
|
|
// See class Menu in AP_Common for implementation details
|
|
static const struct Menu::command test_menu_commands[] PROGMEM = {
|
|
{"pwm", test_radio_pwm},
|
|
{"radio", test_radio},
|
|
{"passthru", test_passthru},
|
|
{"failsafe", test_failsafe},
|
|
{"battery", test_battery},
|
|
{"relay", test_relay},
|
|
{"waypoints", test_wp},
|
|
{"xbee", test_xbee},
|
|
{"eedump", test_eedump},
|
|
{"modeswitch", test_modeswitch},
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
{"dipswitches", test_dipswitches},
|
|
#endif
|
|
|
|
// Tests below here are for hardware sensors only present
|
|
// when real sensors are attached or they are emulated
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
#if CONFIG_ADC == ENABLED
|
|
{"adc", test_adc},
|
|
#endif
|
|
{"gps", test_gps},
|
|
{"rawgps", test_rawgps},
|
|
{"imu", test_imu},
|
|
{"airspeed", test_airspeed},
|
|
{"airpressure", test_pressure},
|
|
{"compass", test_mag},
|
|
{"current", test_current},
|
|
#elif HIL_MODE == HIL_MODE_SENSORS
|
|
{"adc", test_adc},
|
|
{"gps", test_gps},
|
|
{"imu", test_imu},
|
|
{"compass", test_mag},
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
|
#endif
|
|
{"logging", test_logging},
|
|
|
|
};
|
|
|
|
// A Macro to create the Menu
|
|
MENU(test_menu, "test", test_menu_commands);
|
|
|
|
static int8_t
|
|
test_mode(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.printf_P(PSTR("Test Mode\n\n"));
|
|
test_menu.run();
|
|
return 0;
|
|
}
|
|
|
|
static void print_hit_enter()
|
|
{
|
|
Serial.printf_P(PSTR("Hit Enter to exit.\n\n"));
|
|
}
|
|
|
|
static int8_t
|
|
test_eedump(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
int i, j;
|
|
|
|
// hexdump the EEPROM
|
|
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) {
|
|
Serial.printf_P(PSTR("%04x:"), i);
|
|
for (j = 0; j < 16; j++)
|
|
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j)));
|
|
Serial.println();
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
static int8_t
|
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
|
|
// Filters radio input - adjust filters in the radio.pde file
|
|
// ----------------------------------------------------------
|
|
read_radio();
|
|
|
|
Serial.printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
|
|
g.channel_roll.radio_in,
|
|
g.channel_pitch.radio_in,
|
|
g.channel_throttle.radio_in,
|
|
g.channel_rudder.radio_in,
|
|
g.rc_5.radio_in,
|
|
g.rc_6.radio_in,
|
|
g.rc_7.radio_in,
|
|
g.rc_8.radio_in);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_passthru(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
|
|
// New radio frame? (we could use also if((millis()- timer) > 20)
|
|
if (APM_RC.GetState() == 1){
|
|
Serial.print("CH:");
|
|
for(int i = 0; i < 8; i++){
|
|
Serial.print(APM_RC.InputCh(i)); // Print channel values
|
|
Serial.print(",");
|
|
APM_RC.OutputCh(i, APM_RC.InputCh(i)); // Copy input to Servos
|
|
}
|
|
Serial.println();
|
|
}
|
|
if (Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int8_t
|
|
test_radio(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
#if THROTTLE_REVERSE == 1
|
|
Serial.printf_P(PSTR("Throttle is reversed in config: \n"));
|
|
delay(1000);
|
|
#endif
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_radio();
|
|
update_servo_switches();
|
|
|
|
g.channel_roll.calc_pwm();
|
|
g.channel_pitch.calc_pwm();
|
|
g.channel_throttle.calc_pwm();
|
|
g.channel_rudder.calc_pwm();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos();
|
|
|
|
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
|
|
g.channel_roll.control_in,
|
|
g.channel_pitch.control_in,
|
|
g.channel_throttle.control_in,
|
|
g.channel_rudder.control_in,
|
|
g.rc_5.control_in,
|
|
g.rc_6.control_in,
|
|
g.rc_7.control_in,
|
|
g.rc_8.control_in);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_failsafe(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
byte fail_test;
|
|
print_hit_enter();
|
|
for(int i = 0; i < 50; i++){
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
oldSwitchPosition = readSwitch();
|
|
|
|
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n"));
|
|
while(g.channel_throttle.control_in > 0){
|
|
delay(20);
|
|
read_radio();
|
|
}
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_radio();
|
|
|
|
if(g.channel_throttle.control_in > 0){
|
|
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.channel_throttle.control_in);
|
|
fail_test++;
|
|
}
|
|
|
|
if(oldSwitchPosition != readSwitch()){
|
|
Serial.printf_P(PSTR("CONTROL MODE CHANGED: "));
|
|
Serial.println(flight_mode_strings[readSwitch()]);
|
|
fail_test++;
|
|
}
|
|
|
|
if(g.throttle_fs_enabled && g.channel_throttle.get_failsafe()){
|
|
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.channel_throttle.radio_in);
|
|
Serial.println(flight_mode_strings[readSwitch()]);
|
|
fail_test++;
|
|
}
|
|
|
|
if(fail_test > 0){
|
|
return (0);
|
|
}
|
|
if(Serial.available() > 0){
|
|
Serial.printf_P(PSTR("LOS caused no change in APM.\n"));
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_battery(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (g.battery_monitoring >=1 && g.battery_monitoring < 4) {
|
|
for (int i = 0; i < 80; i++){ // Need to get many samples for filter to stabilize
|
|
delay(20);
|
|
read_battery();
|
|
}
|
|
Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"),
|
|
battery_voltage1,
|
|
battery_voltage2,
|
|
battery_voltage3,
|
|
battery_voltage4);
|
|
} else {
|
|
Serial.printf_P(PSTR("Not enabled\n"));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int8_t
|
|
test_current(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (g.battery_monitoring == 4) {
|
|
print_hit_enter();
|
|
delta_ms_medium_loop = 100;
|
|
|
|
while(1){
|
|
delay(100);
|
|
read_radio();
|
|
read_battery();
|
|
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"),
|
|
battery_voltage,
|
|
current_amps,
|
|
current_total);
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos();
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
} else {
|
|
Serial.printf_P(PSTR("Not enabled\n"));
|
|
return (0);
|
|
}
|
|
|
|
}
|
|
|
|
static int8_t
|
|
test_relay(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
Serial.printf_P(PSTR("Relay on\n"));
|
|
relay.on();
|
|
delay(3000);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
|
|
Serial.printf_P(PSTR("Relay off\n"));
|
|
relay.off();
|
|
delay(3000);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_wp(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
delay(1000);
|
|
|
|
// save the alitude above home option
|
|
if(g.RTL_altitude < 0){
|
|
Serial.printf_P(PSTR("Hold current altitude\n"));
|
|
}else{
|
|
Serial.printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude/100);
|
|
}
|
|
|
|
Serial.printf_P(PSTR("%d waypoints\n"), (int)g.command_total);
|
|
Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius);
|
|
Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius);
|
|
|
|
for(byte i = 0; i <= g.command_total; i++){
|
|
struct Location temp = get_cmd_with_index(i);
|
|
test_wp_print(&temp, i);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
test_wp_print(struct Location *cmd, byte wp_index)
|
|
{
|
|
Serial.printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"),
|
|
(int)wp_index,
|
|
(int)cmd->id,
|
|
(int)cmd->options,
|
|
(int)cmd->p1,
|
|
cmd->alt,
|
|
cmd->lat,
|
|
cmd->lng);
|
|
}
|
|
|
|
static int8_t
|
|
test_xbee(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n"));
|
|
|
|
while(1){
|
|
|
|
if (Serial3.available())
|
|
Serial3.write(Serial3.read());
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_modeswitch(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
Serial.printf_P(PSTR("Control CH "));
|
|
|
|
Serial.println(FLIGHT_MODE_CHANNEL, DEC);
|
|
|
|
while(1){
|
|
delay(20);
|
|
byte switchPosition = readSwitch();
|
|
if (oldSwitchPosition != switchPosition){
|
|
Serial.printf_P(PSTR("Position %d\n"), switchPosition);
|
|
oldSwitchPosition = switchPosition;
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
test the dataflash is working
|
|
*/
|
|
static int8_t
|
|
test_logging(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.println_P(PSTR("Testing dataflash logging"));
|
|
if (!DataFlash.CardInserted()) {
|
|
Serial.println_P(PSTR("ERR: No dataflash inserted"));
|
|
return 0;
|
|
}
|
|
DataFlash.ReadManufacturerID();
|
|
Serial.printf_P(PSTR("Manufacturer: 0x%02x Device: 0x%04x\n"),
|
|
(unsigned)DataFlash.df_manufacturer,
|
|
(unsigned)DataFlash.df_device);
|
|
Serial.printf_P(PSTR("NumPages: %u PageSize: %u\n"),
|
|
(unsigned)DataFlash.df_NumPages+1,
|
|
(unsigned)DataFlash.df_PageSize);
|
|
DataFlash.StartRead(DataFlash.df_NumPages+1);
|
|
Serial.printf_P(PSTR("Format version: %lx Expected format version: %lx\n"),
|
|
(unsigned long)DataFlash.ReadLong(), (unsigned long)DF_LOGGING_FORMAT);
|
|
return 0;
|
|
}
|
|
|
|
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
static int8_t
|
|
test_dipswitches(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
if (!g.switch_enable) {
|
|
Serial.println_P(PSTR("dip switches disabled, using EEPROM"));
|
|
}
|
|
|
|
while(1){
|
|
delay(100);
|
|
update_servo_switches();
|
|
|
|
if (g.mix_mode == 0) {
|
|
Serial.printf_P(PSTR("Mix:standard \trev roll:%d, rev pitch:%d, rev rudder:%d\n"),
|
|
(int)g.channel_roll.get_reverse(),
|
|
(int)g.channel_pitch.get_reverse(),
|
|
(int)g.channel_rudder.get_reverse());
|
|
} else {
|
|
Serial.printf_P(PSTR("Mix:elevons \trev elev:%d, rev ch1:%d, rev ch2:%d\n"),
|
|
(int)g.reverse_elevons,
|
|
(int)g.reverse_ch1_elevon,
|
|
(int)g.reverse_ch2_elevon);
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
|
|
|
|
|
|
//-------------------------------------------------------------------------------------------
|
|
// tests in this section are for real sensors or sensors that have been simulated
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_MODE == HIL_MODE_SENSORS
|
|
|
|
#if CONFIG_ADC == ENABLED
|
|
static int8_t
|
|
test_adc(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
adc.Init(&timer_scheduler);
|
|
delay(1000);
|
|
Serial.printf_P(PSTR("ADC\n"));
|
|
delay(1000);
|
|
|
|
while(1){
|
|
for (int i=0;i<9;i++) Serial.printf_P(PSTR("%.1f\t"),adc.Ch(i));
|
|
Serial.println();
|
|
delay(100);
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_ADC
|
|
|
|
static int8_t
|
|
test_gps(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(333);
|
|
|
|
// Blink GPS LED if we don't have a fix
|
|
// ------------------------------------
|
|
update_GPS_light();
|
|
|
|
g_gps->update();
|
|
|
|
if (g_gps->new_data){
|
|
Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"),
|
|
g_gps->latitude,
|
|
g_gps->longitude,
|
|
g_gps->altitude/100,
|
|
g_gps->num_sats);
|
|
}else{
|
|
Serial.printf_P(PSTR("."));
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_imu(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
//Serial.printf_P(PSTR("Calibrating."));
|
|
imu.init(IMU::COLD_START, delay, flash_leds, &timer_scheduler);
|
|
dcm.matrix_reset();
|
|
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
delay(20);
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
// IMU
|
|
// ---
|
|
dcm.update_DCM();
|
|
|
|
if(g.compass_enabled) {
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
if (compass.read()) {
|
|
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
|
|
}
|
|
medium_loopCounter = 0;
|
|
}
|
|
}
|
|
|
|
// We are using the IMU
|
|
// ---------------------
|
|
Vector3f gyros = imu.get_gyro();
|
|
Vector3f accels = imu.get_accel();
|
|
Serial.printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"),
|
|
(int)dcm.roll_sensor / 100,
|
|
(int)dcm.pitch_sensor / 100,
|
|
(uint16_t)dcm.yaw_sensor / 100,
|
|
gyros.x, gyros.y, gyros.z,
|
|
accels.x, accels.y, accels.z);
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_mag(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
if (!g.compass_enabled) {
|
|
Serial.printf_P(PSTR("Compass: "));
|
|
print_enabled(false);
|
|
return (0);
|
|
}
|
|
|
|
compass.set_orientation(MAG_ORIENTATION);
|
|
if (!compass.init()) {
|
|
Serial.println_P(PSTR("Compass initialisation failed!"));
|
|
return 0;
|
|
}
|
|
compass.null_offsets_enable();
|
|
dcm.set_compass(&compass);
|
|
report_compass();
|
|
|
|
// we need the DCM initialised for this test
|
|
imu.init(IMU::COLD_START, delay, flash_leds, &timer_scheduler);
|
|
dcm.matrix_reset();
|
|
|
|
int counter = 0;
|
|
//Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION);
|
|
|
|
print_hit_enter();
|
|
|
|
while(1) {
|
|
delay(20);
|
|
if (millis() - fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
|
|
fast_loopTimer = millis();
|
|
|
|
// IMU
|
|
// ---
|
|
dcm.update_DCM();
|
|
|
|
medium_loopCounter++;
|
|
if(medium_loopCounter == 5){
|
|
if (compass.read()) {
|
|
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
|
|
compass.null_offsets(dcm.get_dcm_matrix());
|
|
}
|
|
medium_loopCounter = 0;
|
|
}
|
|
|
|
counter++;
|
|
if (counter>20) {
|
|
if (compass.healthy) {
|
|
Vector3f maggy = compass.get_offsets();
|
|
Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
|
|
(wrap_360(ToDeg(compass.heading) * 100)) /100,
|
|
compass.mag_x,
|
|
compass.mag_y,
|
|
compass.mag_z,
|
|
maggy.x,
|
|
maggy.y,
|
|
maggy.z);
|
|
} else {
|
|
Serial.println_P(PSTR("compass not healthy"));
|
|
}
|
|
counter=0;
|
|
}
|
|
}
|
|
if (Serial.available() > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// save offsets. This allows you to get sane offset values using
|
|
// the CLI before you go flying.
|
|
Serial.println_P(PSTR("saving offsets"));
|
|
compass.save_offsets();
|
|
return (0);
|
|
}
|
|
|
|
#endif // HIL_MODE == HIL_MODE_DISABLED || HIL_MODE == HIL_MODE_SENSORS
|
|
|
|
//-------------------------------------------------------------------------------------------
|
|
// real sensors that have not been simulated yet go here
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
|
|
static int8_t
|
|
test_airspeed(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
float airspeed_ch = pitot_analog_source.read();
|
|
// Serial.println(pitot_analog_source.read());
|
|
Serial.printf_P(PSTR("airspeed_ch: %.1f\n"), airspeed_ch);
|
|
|
|
if (g.airspeed_enabled == false){
|
|
Serial.printf_P(PSTR("airspeed: "));
|
|
print_enabled(false);
|
|
return (0);
|
|
|
|
}else{
|
|
print_hit_enter();
|
|
zero_airspeed();
|
|
Serial.printf_P(PSTR("airspeed: "));
|
|
print_enabled(true);
|
|
|
|
while(1){
|
|
delay(20);
|
|
read_airspeed();
|
|
Serial.printf_P(PSTR("%.1f m/s\n"), airspeed / 100.0);
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int8_t
|
|
test_pressure(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
Serial.printf_P(PSTR("Uncalibrated relative airpressure\n"));
|
|
print_hit_enter();
|
|
|
|
home.alt = 0;
|
|
wp_distance = 0;
|
|
init_barometer();
|
|
|
|
while(1){
|
|
delay(100);
|
|
current_loc.alt = read_barometer() + home.alt;
|
|
|
|
if (!barometer.healthy) {
|
|
Serial.println_P(PSTR("not healthy"));
|
|
} else {
|
|
Serial.printf_P(PSTR("Alt: %0.2fm, Raw: %ld Temperature: %.1f\n"),
|
|
current_loc.alt / 100.0,
|
|
abs_pressure, 0.1*barometer.get_temperature());
|
|
}
|
|
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int8_t
|
|
test_rawgps(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
print_hit_enter();
|
|
delay(1000);
|
|
|
|
while(1){
|
|
if (Serial3.available()){
|
|
digitalWrite(B_LED_PIN, LED_ON); // Blink Yellow LED if we are sending data to GPS
|
|
Serial1.write(Serial3.read());
|
|
digitalWrite(B_LED_PIN, LED_OFF);
|
|
}
|
|
if (Serial1.available()){
|
|
digitalWrite(C_LED_PIN, LED_ON); // Blink Red LED if we are receiving data from GPS
|
|
Serial3.write(Serial1.read());
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
}
|
|
if(Serial.available() > 0){
|
|
return (0);
|
|
}
|
|
}
|
|
}
|
|
#endif // HIL_MODE == HIL_MODE_DISABLED
|
|
|
|
#endif // CLI_ENABLED
|