mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 13:18:28 -04:00
216 lines
7.1 KiB
C++
216 lines
7.1 KiB
C++
/*
|
||
* This file is free software: you can redistribute it and/or modify it
|
||
* under the terms of the GNU General Public License as published by the
|
||
* Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This file is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
* See the GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along
|
||
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*
|
||
* Code by Andy Piper
|
||
*/
|
||
|
||
#include <AP_HAL/AP_HAL.h>
|
||
|
||
#if HAL_WITH_DSP
|
||
|
||
#include "AP_HAL_SITL.h"
|
||
#include <AP_Math/AP_Math.h>
|
||
#include <GCS_MAVLink/GCS.h>
|
||
#include "DSP.h"
|
||
#include <cmath>
|
||
#include <assert.h>
|
||
|
||
using namespace HALSITL;
|
||
|
||
extern const AP_HAL::HAL& hal;
|
||
|
||
// The algorithms originally came from betaflight but are now substantially modified based on theory and experiment.
|
||
// https://holometer.fnal.gov/GH_FFT.pdf "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
|
||
// including a comprehensive list of window functions and some new flat-top windows." - Heinzel et. al is a great reference
|
||
// for understanding the underlying theory although we do not use spectral density here since time resolution is equally
|
||
// important as frequency resolution. Referred to as [Heinz] throughout the code.
|
||
|
||
// initialize the FFT state machine
|
||
AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t sliding_window_size)
|
||
{
|
||
DSP::FFTWindowStateSITL* fft = new DSP::FFTWindowStateSITL(window_size, sample_rate, sliding_window_size);
|
||
if (fft == nullptr || fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr || fft->_derivative_freq_bins == nullptr) {
|
||
delete fft;
|
||
return nullptr;
|
||
}
|
||
return fft;
|
||
}
|
||
|
||
// start an FFT analysis
|
||
void DSP::fft_start(AP_HAL::DSP::FFTWindowState* state, FloatBuffer& samples, uint16_t advance)
|
||
{
|
||
step_hanning((FFTWindowStateSITL*)state, samples, advance);
|
||
}
|
||
|
||
// perform remaining steps of an FFT analysis
|
||
uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff)
|
||
{
|
||
FFTWindowStateSITL* fft = (FFTWindowStateSITL*)state;
|
||
step_fft(fft);
|
||
step_cmplx_mag(fft, start_bin, end_bin, noise_att_cutoff);
|
||
return step_calc_frequencies(fft, start_bin, end_bin);
|
||
}
|
||
|
||
// create an instance of the FFT state machine
|
||
DSP::FFTWindowStateSITL::FFTWindowStateSITL(uint16_t window_size, uint16_t sample_rate, uint8_t sliding_window_size)
|
||
: AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate, sliding_window_size)
|
||
{
|
||
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) {
|
||
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Failed to allocate window for DSP");
|
||
return;
|
||
}
|
||
|
||
buf = new complexf[window_size];
|
||
}
|
||
|
||
DSP::FFTWindowStateSITL::~FFTWindowStateSITL()
|
||
{
|
||
delete[] buf;
|
||
}
|
||
|
||
// step 1: filter the incoming samples through a Hanning window
|
||
void DSP::step_hanning(FFTWindowStateSITL* fft, FloatBuffer& samples, uint16_t advance)
|
||
{
|
||
// 5us
|
||
// apply hanning window to gyro samples and store result in _freq_bins
|
||
// hanning starts and ends with 0, could be skipped for minor speed improvement
|
||
uint32_t read_window = samples.peek(&fft->_freq_bins[0], fft->_window_size);
|
||
if (read_window != fft->_window_size) {
|
||
return;
|
||
}
|
||
samples.advance(advance);
|
||
mult_f32(&fft->_freq_bins[0], &fft->_hanning_window[0], &fft->_freq_bins[0], fft->_window_size);
|
||
}
|
||
|
||
// step 2: perform an in-place FFT on the windowed data
|
||
void DSP::step_fft(FFTWindowStateSITL* fft)
|
||
{
|
||
for (uint16_t i = 0; i < fft->_window_size; i++) {
|
||
fft->buf[i] = complexf(fft->_freq_bins[i], 0);
|
||
}
|
||
|
||
calculate_fft(fft->buf, fft->_window_size);
|
||
|
||
for (uint16_t i = 0; i < fft->_bin_count; i++) {
|
||
fft->_freq_bins[i] = std::norm(fft->buf[i]);
|
||
}
|
||
|
||
// components at the nyquist frequency are real only
|
||
for (uint16_t i = 0, j = 0; i <= fft->_bin_count; i++, j += 2) {
|
||
fft->_rfft_data[j] = fft->buf[i].real();
|
||
fft->_rfft_data[j+1] = fft->buf[i].imag();
|
||
}
|
||
}
|
||
|
||
void DSP::mult_f32(const float* v1, const float* v2, float* vout, uint16_t len)
|
||
{
|
||
for (uint16_t i = 0; i < len; i++) {
|
||
vout[i] = v1[i] * v2[i];
|
||
}
|
||
}
|
||
|
||
void DSP::vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const
|
||
{
|
||
*maxValue = vin[0];
|
||
*maxIndex = 0;
|
||
for (uint16_t i = 1; i < len; i++) {
|
||
if (vin[i] > *maxValue) {
|
||
*maxValue = vin[i];
|
||
*maxIndex = i;
|
||
}
|
||
}
|
||
}
|
||
|
||
void DSP::vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const
|
||
{
|
||
for (uint16_t i = 0; i < len; i++) {
|
||
vout[i] = vin[i] * scale;
|
||
}
|
||
}
|
||
|
||
void DSP::vector_add_float(const float* vin1, const float* vin2, float* vout, uint16_t len) const
|
||
{
|
||
for (uint16_t i = 0; i < len; i++) {
|
||
vout[i] = vin1[i] + vin2[i];
|
||
}
|
||
}
|
||
|
||
float DSP::vector_mean_float(const float* vin, uint16_t len) const
|
||
{
|
||
float mean_value = 0.0f;
|
||
for (uint16_t i = 0; i < len; i++) {
|
||
mean_value += vin[i];
|
||
}
|
||
mean_value /= len;
|
||
return mean_value;
|
||
}
|
||
|
||
// simple integer log2
|
||
static uint16_t fft_log2(uint16_t n)
|
||
{
|
||
uint16_t k = n, i = 0;
|
||
while (k) {
|
||
k >>= 1;
|
||
i++;
|
||
}
|
||
return i - 1;
|
||
}
|
||
|
||
// calculate the in-place FFT of the input using the Cooley–Tukey algorithm
|
||
// this is a translation of Ron Nicholson's version in http://www.nicholson.com/dsp.fft1.html
|
||
void DSP::calculate_fft(complexf *samples, uint16_t fftlen)
|
||
{
|
||
uint16_t m = fft_log2(fftlen);
|
||
// shuffle data using bit reversed addressing ***
|
||
for (uint16_t k = 0; k < fftlen; k++) {
|
||
// generate a bit reversed address for samples[k] ***
|
||
uint16_t ki = k, kr = 0;
|
||
for (uint16_t i=1; i<=m; i++) {
|
||
kr <<= 1; // left shift result kr by 1 bit
|
||
if (ki % 2 == 1) {
|
||
kr++;
|
||
}
|
||
ki >>= 1; // right shift temp ki by 1 bit
|
||
}
|
||
// swap data samples[k] to bit reversed address samples[kr]
|
||
if (kr > k) {
|
||
complexf t = samples[kr];
|
||
samples[kr] = samples[k];
|
||
samples[k] = t;
|
||
}
|
||
}
|
||
|
||
// do fft butterflys in place
|
||
uint16_t istep = 2;
|
||
while (istep <= fftlen) {// layers 2,4,8,16, ... ,n
|
||
uint16_t is2 = istep / 2;
|
||
uint16_t astep = fftlen / istep;
|
||
for (uint16_t km = 0; km < is2; km++) { // outer row loop
|
||
uint16_t a = km * astep; // twiddle angle index
|
||
complexf w(sinf(2 * M_PI * (a+(fftlen/4)) / fftlen), sinf(2 * M_PI * a / fftlen));
|
||
for (uint16_t ki = 0; ki <= (fftlen - istep); ki += istep) { // inner column loop
|
||
uint16_t i = km + ki;
|
||
uint16_t j = is2 + i;
|
||
complexf t = w * samples[j];
|
||
complexf q = samples[i];
|
||
samples[j] = q - t;
|
||
samples[i] = q + t;
|
||
}
|
||
}
|
||
istep <<= 1;
|
||
}
|
||
}
|
||
|
||
#endif
|