ardupilot/libraries/AP_HAL_SITL/RCOutput.cpp

158 lines
3.7 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <SITL/SITL.h>
#include "RCOutput.h"
#define ENABLE_DEBUG 0
#if ENABLE_DEBUG
# include <stdio.h>
# define Debug(fmt, args ...) do {::printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while (0)
#else
# define Debug(fmt, args ...)
#endif
using namespace HALSITL;
void RCOutput::init() {}
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
Debug("set_freq(0x%04x, %u)\n", static_cast<uint32_t>(chmask), static_cast<uint32_t>(freq_hz));
_freq_hz = freq_hz;
}
uint16_t RCOutput::get_freq(uint8_t ch)
{
return _freq_hz;
}
void RCOutput::enable_ch(uint8_t ch)
{
if (!(_enable_mask & (1U << ch))) {
Debug("enable_ch(%u)\n", ch);
}
_enable_mask |= (1U << ch);
}
void RCOutput::disable_ch(uint8_t ch)
{
if (_enable_mask & (1U << ch)) {
Debug("disable_ch(%u)\n", ch);
}
_enable_mask &= ~(1U << ch);
}
void RCOutput::write(uint8_t ch, uint16_t period_us)
{
if (safety_state == AP_HAL::Util::SAFETY_DISARMED) {
const uint32_t safety_mask = AP_BoardConfig::get_singleton()->get_safety_mask();
if (!(safety_mask & (1U<<ch))) {
// implement safety pwm value
period_us = 0;
}
}
_sitlState->output_ready = true;
// FIXME: something in sitl is expecting to be able to read and write disabled channels
if (ch < SITL_NUM_CHANNELS /*&& (_enable_mask & (1U<<ch))*/) {
if (_corked) {
_pending[ch] = period_us;
} else {
_sitlState->pwm_output[ch] = period_us;
}
}
}
uint16_t RCOutput::read(uint8_t ch)
{
// FIXME: something in sitl is expecting to be able to read and write disabled channels
if (ch < SITL_NUM_CHANNELS /*&& (_enable_mask & (1U<<ch))*/) {
return _sitlState->pwm_output[ch];
}
return 0;
}
void RCOutput::read(uint16_t* period_us, uint8_t len)
{
memcpy(period_us, _sitlState->pwm_output, len * sizeof(uint16_t));
}
void RCOutput::cork(void)
{
if (!_corked) {
memcpy(_pending, _sitlState->pwm_output, SITL_NUM_CHANNELS * sizeof(uint16_t));
_corked = true;
}
}
void RCOutput::push(void)
{
if (_corked) {
memcpy(_sitlState->pwm_output, _pending, SITL_NUM_CHANNELS * sizeof(uint16_t));
_corked = false;
}
SITL::SIM *sitl = AP::sitl();
if (sitl && sitl->esc_telem) {
if (esc_telem == nullptr) {
esc_telem = new AP_ESC_Telem_SITL;
}
if (esc_telem != nullptr) {
esc_telem->update();
}
}
}
/*
Serial LED emulation
*/
bool RCOutput::set_serial_led_num_LEDs(const uint16_t chan, uint8_t num_leds, output_mode mode, uint32_t clock_mask)
{
if (chan > 15 || num_leds > 64) {
return false;
}
SITL::SIM *sitl = AP::sitl();
if (sitl) {
sitl->led.num_leds[chan] = num_leds;
return true;
}
return false;
}
void RCOutput::set_serial_led_rgb_data(const uint16_t chan, int8_t led, uint8_t red, uint8_t green, uint8_t blue)
{
if (chan > 15) {
return;
}
SITL::SIM *sitl = AP::sitl();
if (led == -1) {
for (uint8_t i=0; i < sitl->led.num_leds[chan]; i++) {
set_serial_led_rgb_data(chan, i, red, green, blue);
}
return;
}
if (led < -1 || led >= sitl->led.num_leds[chan]) {
return;
}
if (sitl) {
sitl->led.rgb[chan][led].rgb[0] = red;
sitl->led.rgb[chan][led].rgb[1] = green;
sitl->led.rgb[chan][led].rgb[2] = blue;
}
}
void RCOutput::serial_led_send(const uint16_t chan)
{
SITL::SIM *sitl = AP::sitl();
if (sitl) {
sitl->led.send_counter++;
}
}
#endif //CONFIG_HAL_BOARD == HAL_BOARD_SITL