mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 21:28:39 -04:00
61f564d7c9
Pair-Programmed-With: Randy Mackay <rmackay9@yahoo.com>
322 lines
12 KiB
C++
322 lines
12 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#include <AP_Progmem.h>
|
|
#include "Compass.h"
|
|
|
|
const AP_Param::GroupInfo Compass::var_info[] PROGMEM = {
|
|
// index 0 was used for the old orientation matrix
|
|
|
|
// @Param: OFS_X
|
|
// @DisplayName: Compass offsets on the X axis
|
|
// @Description: Offset to be added to the compass x-axis values to compensate for metal in the frame
|
|
// @Range: -400 400
|
|
// @Increment: 1
|
|
|
|
// @Param: OFS_Y
|
|
// @DisplayName: Compass offsets on the Y axis
|
|
// @Description: Offset to be added to the compass y-axis values to compensate for metal in the frame
|
|
// @Range: -400 400
|
|
// @Increment: 1
|
|
|
|
// @Param: OFS_Z
|
|
// @DisplayName: Compass offsets on the Z axis
|
|
// @Description: Offset to be added to the compass z-axis values to compensate for metal in the frame
|
|
// @Range: -400 400
|
|
// @Increment: 1
|
|
AP_GROUPINFO("OFS", 1, Compass, _offset[0], 0),
|
|
|
|
// @Param: DEC
|
|
// @DisplayName: Compass declination
|
|
// @Description: An angle to compensate between the true north and magnetic north
|
|
// @Range: -3.142 3.142
|
|
// @Units: Radians
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
AP_GROUPINFO("DEC", 2, Compass, _declination, 0),
|
|
|
|
// @Param: LEARN
|
|
// @DisplayName: Learn compass offsets automatically
|
|
// @Description: Enable or disable the automatic learning of compass offsets
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("LEARN", 3, Compass, _learn, 1), // true if learning calibration
|
|
|
|
// @Param: USE
|
|
// @DisplayName: Use compass for yaw
|
|
// @Description: Enable or disable the use of the compass (instead of the GPS) for determining heading
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("USE", 4, Compass, _use_for_yaw, 1), // true if used for DCM yaw
|
|
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
// @Param: AUTODEC
|
|
// @DisplayName: Auto Declination
|
|
// @Description: Enable or disable the automatic calculation of the declination based on gps location
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("AUTODEC",5, Compass, _auto_declination, 1),
|
|
#endif
|
|
|
|
// @Param: MOTCT
|
|
// @DisplayName: Motor interference compensation type
|
|
// @Description: Set motor interference compensation type to disabled, throttle or current. Do not change manually.
|
|
// @Values: 0:Disabled,1:Use Throttle,2:Use Current
|
|
// @Increment: 1
|
|
AP_GROUPINFO("MOTCT", 6, Compass, _motor_comp_type, AP_COMPASS_MOT_COMP_DISABLED),
|
|
|
|
// @Param: MOT_X
|
|
// @DisplayName: Motor interference compensation for body frame X axis
|
|
// @Description: Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference
|
|
// @Range: -1000 1000
|
|
// @Units: Offset per Amp or at Full Throttle
|
|
// @Increment: 1
|
|
|
|
// @Param: MOT_Y
|
|
// @DisplayName: Motor interference compensation for body frame Y axis
|
|
// @Description: Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference
|
|
// @Range: -1000 1000
|
|
// @Units: Offset per Amp or at Full Throttle
|
|
// @Increment: 1
|
|
|
|
// @Param: MOT_Z
|
|
// @DisplayName: Motor interference compensation for body frame Z axis
|
|
// @Description: Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference
|
|
// @Range: -1000 1000
|
|
// @Units: Offset per Amp or at Full Throttle
|
|
// @Increment: 1
|
|
AP_GROUPINFO("MOT", 7, Compass, _motor_compensation[0], 0),
|
|
|
|
// @Param: ORIENT
|
|
// @DisplayName: Compass orientation
|
|
// @Description: The orientation of the compass relative to the autopilot board. This will default to the right value for each board type, but can be changed if you have an external compass. See the documentation for your external compass for the right value. The correct orientation should give the X axis forward, the Y axis to the right and the Z axis down. So if your aircraft is pointing west it should show a positive value for the Y axis, and a value close to zero for the X axis. NOTE: This orientation is combined with any AHRS_ORIENTATION setting.
|
|
// @Values: 0:None,1:Yaw45,2:Yaw90,3:Yaw135,4:Yaw180,5:Yaw225,6:Yaw270,7:Yaw315,8:Roll180,9:Roll180Yaw45,10:Roll180Yaw90,11:Roll180Yaw135,12:Pitch180,13:Roll180Yaw225,14:Roll180Yaw270,15:Roll180Yaw315,16:Roll90,17:Roll90Yaw45,18:Roll90Yaw90,19:Roll90Yaw135,20:Roll270,21:Roll270Yaw45,22:Roll270Yaw90,23:Roll270Yaw136,24:Pitch90,25:Pitch270,26:Pitch180Yaw90,27:Pitch180Yaw270,28:Roll90Pitch90,29:Roll180Pitch90,30:Roll270Pitch90,31:Roll90Pitch180,32:Roll270Pitch180,33:Roll90Pitch270,34:Roll180Pitch270,35:Roll270Pitch270,36:Roll90Pitch180Yaw90,37:Roll90Yaw270
|
|
AP_GROUPINFO("ORIENT", 8, Compass, _orientation, ROTATION_NONE),
|
|
|
|
// @Param: EXTERNAL
|
|
// @DisplayName: Compass is attached via an external cable
|
|
// @Description: Configure compass so it is attached externally. This is auto-detected on PX4, but must be set correctly on an APM2. Set to 1 if the compass is externally connected. When externally connected the COMPASS_ORIENT option operates independently of the AHRS_ORIENTATION board orientation option
|
|
// @Values: 0:Internal,1:External
|
|
// @User: Advanced
|
|
AP_GROUPINFO("EXTERNAL", 9, Compass, _external, 0),
|
|
|
|
#if COMPASS_MAX_INSTANCES > 1
|
|
AP_GROUPINFO("OFS2", 10, Compass, _offset[1], 0),
|
|
AP_GROUPINFO("MOT2", 11, Compass, _motor_compensation[1], 0),
|
|
#endif
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
Compass::Compass(void) :
|
|
product_id(AP_COMPASS_TYPE_UNKNOWN),
|
|
_null_init_done(false)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
// Default init method, just returns success.
|
|
//
|
|
bool
|
|
Compass::init()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Compass::set_offsets(const Vector3f &offsets)
|
|
{
|
|
_offset[0].set(offsets);
|
|
}
|
|
|
|
void
|
|
Compass::save_offsets()
|
|
{
|
|
for (uint8_t k=0; k<COMPASS_MAX_INSTANCES; k++) {
|
|
_offset[k].save();
|
|
}
|
|
}
|
|
|
|
void
|
|
Compass::set_motor_compensation(const Vector3f &motor_comp_factor, uint8_t i)
|
|
{
|
|
_motor_compensation[i].set(motor_comp_factor);
|
|
}
|
|
|
|
void
|
|
Compass::save_motor_compensation()
|
|
{
|
|
_motor_comp_type.save();
|
|
for (uint8_t k=0; k<COMPASS_MAX_INSTANCES; k++) {
|
|
_motor_compensation[k].save();
|
|
}
|
|
}
|
|
|
|
void
|
|
Compass::set_initial_location(int32_t latitude, int32_t longitude)
|
|
{
|
|
// if automatic declination is configured, then compute
|
|
// the declination based on the initial GPS fix
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
if (_auto_declination) {
|
|
// Set the declination based on the lat/lng from GPS
|
|
_declination.set(radians(
|
|
AP_Declination::get_declination(
|
|
(float)latitude / 10000000,
|
|
(float)longitude / 10000000)));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
Compass::set_declination(float radians, bool save_to_eeprom)
|
|
{
|
|
if (save_to_eeprom) {
|
|
_declination.set_and_save(radians);
|
|
}else{
|
|
_declination.set(radians);
|
|
}
|
|
}
|
|
|
|
float
|
|
Compass::get_declination() const
|
|
{
|
|
return _declination.get();
|
|
}
|
|
|
|
/*
|
|
calculate a compass heading given the attitude from DCM and the mag vector
|
|
*/
|
|
float
|
|
Compass::calculate_heading(const Matrix3f &dcm_matrix) const
|
|
{
|
|
float cos_pitch_sq = 1.0f-(dcm_matrix.c.x*dcm_matrix.c.x);
|
|
|
|
// Tilt compensated magnetic field Y component:
|
|
float headY = _field[0].y * dcm_matrix.c.z - _field[0].z * dcm_matrix.c.y;
|
|
|
|
// Tilt compensated magnetic field X component:
|
|
float headX = _field[0].x * cos_pitch_sq - dcm_matrix.c.x * (_field[0].y * dcm_matrix.c.y + _field[0].z * dcm_matrix.c.z);
|
|
|
|
// magnetic heading
|
|
// 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S.
|
|
float heading = constrain_float(atan2f(-headY,headX), -3.15f, 3.15f);
|
|
|
|
// Declination correction (if supplied)
|
|
if( fabsf(_declination) > 0.0f )
|
|
{
|
|
heading = heading + _declination;
|
|
if (heading > PI) // Angle normalization (-180 deg, 180 deg)
|
|
heading -= (2.0f * PI);
|
|
else if (heading < -PI)
|
|
heading += (2.0f * PI);
|
|
}
|
|
|
|
return heading;
|
|
}
|
|
|
|
|
|
/*
|
|
* this offset nulling algorithm is inspired by this paper from Bill Premerlani
|
|
*
|
|
* http://gentlenav.googlecode.com/files/MagnetometerOffsetNullingRevisited.pdf
|
|
*
|
|
* The base algorithm works well, but is quite sensitive to
|
|
* noise. After long discussions with Bill, the following changes were
|
|
* made:
|
|
*
|
|
* 1) we keep a history buffer that effectively divides the mag
|
|
* vectors into a set of N streams. The algorithm is run on the
|
|
* streams separately
|
|
*
|
|
* 2) within each stream we only calculate a change when the mag
|
|
* vector has changed by a significant amount.
|
|
*
|
|
* This gives us the property that we learn quickly if there is no
|
|
* noise, but still learn correctly (and slowly) in the face of lots of
|
|
* noise.
|
|
*/
|
|
void
|
|
Compass::null_offsets(void)
|
|
{
|
|
if (_learn == 0) {
|
|
// auto-calibration is disabled
|
|
return;
|
|
}
|
|
|
|
// this gain is set so we converge on the offsets in about 5
|
|
// minutes with a 10Hz compass
|
|
const float gain = 0.01;
|
|
const float max_change = 10.0;
|
|
const float min_diff = 50.0;
|
|
|
|
if (!_null_init_done) {
|
|
// first time through
|
|
_null_init_done = true;
|
|
for (uint8_t k=0; k<COMPASS_MAX_INSTANCES; k++) {
|
|
const Vector3f &ofs = _offset[k].get();
|
|
for (uint8_t i=0; i<_mag_history_size; i++) {
|
|
// fill the history buffer with the current mag vector,
|
|
// with the offset removed
|
|
_mag_history[k][i] = Vector3i((_field[k].x+0.5f) - ofs.x, (_field[k].y+0.5f) - ofs.y, (_field[k].z+0.5f) - ofs.z);
|
|
}
|
|
_mag_history_index[k] = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (uint8_t k=0; k<COMPASS_MAX_INSTANCES; k++) {
|
|
const Vector3f &ofs = _offset[k].get();
|
|
Vector3f b1, diff;
|
|
float length;
|
|
|
|
// get a past element
|
|
b1 = Vector3f(_mag_history[k][_mag_history_index[k]].x,
|
|
_mag_history[k][_mag_history_index[k]].y,
|
|
_mag_history[k][_mag_history_index[k]].z);
|
|
|
|
// the history buffer doesn't have the offsets
|
|
b1 += ofs;
|
|
|
|
// get the current vector
|
|
const Vector3f &b2 = _field[k];
|
|
|
|
// calculate the delta for this sample
|
|
diff = b2 - b1;
|
|
length = diff.length();
|
|
if (length < min_diff) {
|
|
// the mag vector hasn't changed enough - we don't get
|
|
// enough information from this vector to use it.
|
|
// Note that we don't put the current vector into the mag
|
|
// history here. We want to wait for a larger rotation to
|
|
// build up before calculating an offset change, as accuracy
|
|
// of the offset change is highly dependent on the size of the
|
|
// rotation.
|
|
_mag_history_index[k] = (_mag_history_index[k] + 1) % _mag_history_size;
|
|
continue;
|
|
}
|
|
|
|
// put the vector in the history
|
|
_mag_history[k][_mag_history_index[k]] = Vector3i((_field[k].x+0.5f) - ofs.x,
|
|
(_field[k].y+0.5f) - ofs.y,
|
|
(_field[k].z+0.5f) - ofs.z);
|
|
_mag_history_index[k] = (_mag_history_index[k] + 1) % _mag_history_size;
|
|
|
|
// equation 6 of Bills paper
|
|
diff = diff * (gain * (b2.length() - b1.length()) / length);
|
|
|
|
// limit the change from any one reading. This is to prevent
|
|
// single crazy readings from throwing off the offsets for a long
|
|
// time
|
|
length = diff.length();
|
|
if (length > max_change) {
|
|
diff *= max_change / length;
|
|
}
|
|
|
|
// set the new offsets
|
|
_offset[k].set(_offset[k].get() - diff);
|
|
}
|
|
}
|