ardupilot/libraries/AC_AttitudeControl/AC_PosControl.cpp

693 lines
27 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_PosControl.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_PosControl::var_info[] PROGMEM = {
// @Param: THR_HOVER
// @DisplayName: Throttle Hover
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode
// @Range: 0 1000
// @Units: Percent*10
// @User: Advanced
AP_GROUPINFO("THR_HOVER", 0, AC_PosControl, _throttle_hover, POSCONTROL_THROTTLE_HOVER),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav,
const AP_Motors& motors, AC_AttitudeControl& attitude_control,
APM_PI& pi_alt_pos, AC_PID& pid_alt_rate, AC_PID& pid_alt_accel,
APM_PI& pi_pos_lat, APM_PI& pi_pos_lon, AC_PID& pid_rate_lat, AC_PID& pid_rate_lon) :
_ahrs(ahrs),
_inav(inav),
_motors(motors),
_attitude_control(attitude_control),
_pi_alt_pos(pi_alt_pos),
_pid_alt_rate(pid_alt_rate),
_pid_alt_accel(pid_alt_accel),
_pi_pos_lat(pi_pos_lat),
_pi_pos_lon(pi_pos_lon),
_pid_rate_lat(pid_rate_lat),
_pid_rate_lon(pid_rate_lon),
_dt(POSCONTROL_DT_10HZ),
_last_update_ms(0),
_last_update_rate_ms(0),
_last_update_accel_ms(0),
_step(0),
_speed_down_cms(POSCONTROL_SPEED_DOWN),
_speed_up_cms(POSCONTROL_SPEED_UP),
_speed_cms(POSCONTROL_SPEED),
_accel_z_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default
_accel_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default
_leash(POSCONTROL_LEASH_LENGTH_MIN),
_cos_yaw(1.0),
_sin_yaw(0.0),
_cos_pitch(1.0),
_roll_target(0.0),
_pitch_target(0.0),
_vel_target_filt_z(0),
_alt_max(0),
_distance_to_target(0),
_xy_step(0),
_dt_xy(0)
{
AP_Param::setup_object_defaults(this, var_info);
// initialise flags
_flags.force_recalc_xy = false;
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
_flags.slow_cpu = false;
#else
_flags.slow_cpu = true;
#endif
_flags.recalc_leash_xy = true;
_flags.recalc_leash_z = true;
}
///
/// z-axis position controller
///
/// set_speed_z - sets maximum climb and descent rates
/// To-Do: call this in the main code as part of flight mode initialisation
/// calc_leash_length_z should be called afterwards
/// speed_down should be a negative number
void AC_PosControl::set_speed_z(float speed_down, float speed_up)
{
if ((fabs(_speed_down_cms-speed_down) > 1.0f) || (fabs(_speed_up_cms-speed_up) > 1.0f)) {
_speed_down_cms = speed_down;
_speed_up_cms = speed_up;
_flags.recalc_leash_z = true;
}
}
/// set_accel_z - set vertical acceleration in cm/s/s
void AC_PosControl::set_accel_z(float accel_cmss)
{
if (fabs(_accel_z_cms-accel_cmss) > 1.0f) {
_accel_z_cms = accel_cmss;
_flags.recalc_leash_z = true;
}
}
/// set_alt_target_with_slew - adjusts target towards a final altitude target
/// should be called continuously (with dt set to be the expected time between calls)
/// actual position target will be moved no faster than the speed_down and speed_up
/// target will also be stopped if the motors hit their limits or leash length is exceeded
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt)
{
float alt_change = alt_cm-_pos_target.z;
// adjust desired alt if motors have not hit their limits
if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) {
_pos_target.z += constrain_float(alt_change, _speed_down_cms*dt, _speed_up_cms*dt);
}
// do not let target get too far from current altitude
float curr_alt = _inav.get_altitude();
_pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z);
}
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
/// should be called continuously (with dt set to be the expected time between calls)
/// actual position target will be moved no faster than the speed_down and speed_up
/// target will also be stopped if the motors hit their limits or leash length is exceeded
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt)
{
// adjust desired alt if motors have not hit their limits
// To-Do: add check of _limit.pos_up and _limit.pos_down?
if ((climb_rate_cms<0 && !_motors.limit.throttle_lower) || (climb_rate_cms>0 && !_motors.limit.throttle_upper)) {
_pos_target.z += climb_rate_cms * _dt;
}
}
// get_alt_error - returns altitude error in cm
float AC_PosControl::get_alt_error() const
{
return (_pos_target.z - _inav.get_altitude());
}
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home
void AC_PosControl::set_target_to_stopping_point_z()
{
get_stopping_point_z(_pos_target);
}
/// get_stopping_point_z - sets stopping_point.z to a reasonable stopping altitude in cm above home
void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const
{
const float curr_pos_z = _inav.get_altitude();
const float curr_vel_z = _inav.get_velocity_z();
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt
float linear_velocity; // the velocity we swap between linear and sqrt
// calculate the velocity at which we switch from calculating the stopping point using a linear funcction to a sqrt function
linear_velocity = POSCONTROL_ALT_HOLD_ACCEL_MAX/_pi_alt_pos.kP();
if (fabs(curr_vel_z) < linear_velocity) {
// if our current velocity is below the cross-over point we use a linear function
stopping_point.z = curr_pos_z + curr_vel_z/_pi_alt_pos.kP();
} else {
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_pi_alt_pos.kP()*_pi_alt_pos.kP());
if (curr_vel_z > 0){
stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z*curr_vel_z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX));
} else {
stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z*curr_vel_z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX));
}
}
stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_Z_MAX);
}
/// init_takeoff - initialises target altitude if we are taking off
void AC_PosControl::init_takeoff()
{
const Vector3f& curr_pos = _inav.get_position();
_pos_target.z = curr_pos.z + POSCONTROL_TAKEOFF_JUMP_CM;
// clear i term from acceleration controller
if (_pid_alt_accel.get_integrator() < 0) {
_pid_alt_accel.reset_I();
}
}
/// update_z_controller - fly to altitude in cm above home
void AC_PosControl::update_z_controller()
{
// check if leash lengths need to be recalculated
calc_leash_length_z();
// call position controller
pos_to_rate_z();
}
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
/// called by pos_to_rate_z if z-axis speed or accelerations are changed
void AC_PosControl::calc_leash_length_z()
{
if (_flags.recalc_leash_z) {
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _pi_alt_pos.kP());
_leash_down_z = calc_leash_length(_speed_down_cms, _accel_z_cms, _pi_alt_pos.kP());
_flags.recalc_leash_z = false;
}
}
// pos_to_rate_z - position to rate controller for Z axis
// calculates desired rate in earth-frame z axis and passes to rate controller
// vel_up_max, vel_down_max should have already been set before calling this method
void AC_PosControl::pos_to_rate_z()
{
float curr_alt = _inav.get_altitude();
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt.
// clear position limit flags
_limit.pos_up = false;
_limit.pos_down = false;
// calculate altitude error
_pos_error.z = _pos_target.z - curr_alt;
// do not let target altitude get too far from current altitude
if (_pos_error.z > _leash_up_z) {
_pos_target.z = curr_alt + _leash_up_z;
_limit.pos_up = true;
}
if (_pos_error.z < -_leash_down_z) {
_pos_target.z = curr_alt - _leash_down_z;
_limit.pos_down = true;
}
// do not let target alt get above limit
if (_alt_max > 0 && _pos_target.z > _alt_max) {
_pos_target.z = _alt_max;
_limit.pos_up = true;
}
// check kP to avoid division by zero
if (_pi_alt_pos.kP() != 0) {
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_pi_alt_pos.kP()*_pi_alt_pos.kP());
if (_pos_error.z > 2*linear_distance ) {
_vel_target.z = safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(_pos_error.z-linear_distance));
}else if (_pos_error.z < -2.0f*linear_distance) {
_vel_target.z = -safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(-_pos_error.z-linear_distance));
}else{
_vel_target.z = _pi_alt_pos.get_p(_pos_error.z);
}
}else{
_vel_target.z = 0;
}
// call rate based throttle controller which will update accel based throttle controller targets
rate_to_accel_z(_vel_target.z);
}
// rate_to_accel_z - calculates desired accel required to achieve the velocity target
// calculates desired acceleration and calls accel throttle controller
void AC_PosControl::rate_to_accel_z(float vel_target_z)
{
uint32_t now = hal.scheduler->millis();
const Vector3f& curr_vel = _inav.get_velocity();
float z_target_speed_delta; // The change in requested speed
float p; // used to capture pid values for logging
float desired_accel; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors
// check speed limits
// To-Do: check these speed limits here or in the pos->rate controller
_limit.vel_up = false;
_limit.vel_down = false;
if (_vel_target.z < _speed_down_cms) {
_vel_target.z = _speed_down_cms;
_limit.vel_down = true;
}
if (_vel_target.z > _speed_up_cms) {
_vel_target.z = _speed_up_cms;
_limit.vel_up = true;
}
// reset velocity error and filter if this controller has just been engaged
if (now - _last_update_rate_ms > 100 ) {
// Reset Filter
_vel_error.z = 0;
_vel_target_filt_z = vel_target_z;
desired_accel = 0;
} else {
// calculate rate error and filter with cut off frequency of 2 Hz
//To-Do: adjust constant below based on update rate
_vel_error.z = _vel_error.z + 0.20085f * ((vel_target_z - curr_vel.z) - _vel_error.z);
// feed forward acceleration based on change in the filtered desired speed.
z_target_speed_delta = 0.20085f * (vel_target_z - _vel_target_filt_z);
_vel_target_filt_z = _vel_target_filt_z + z_target_speed_delta;
desired_accel = z_target_speed_delta / _dt;
}
_last_update_rate_ms = now;
// calculate p
p = _pid_alt_rate.kP() * _vel_error.z;
// consolidate and constrain target acceleration
desired_accel += p;
desired_accel = constrain_int32(desired_accel, -32000, 32000);
// To-Do: re-enable PID logging?
// TO-DO: ensure throttle cruise is updated some other way in the main code or attitude control
// set target for accel based throttle controller
accel_to_throttle(desired_accel);
}
// accel_to_throttle - alt hold's acceleration controller
// calculates a desired throttle which is sent directly to the motors
void AC_PosControl::accel_to_throttle(float accel_target_z)
{
uint32_t now = hal.scheduler->millis();
float z_accel_meas; // actual acceleration
int32_t p,i,d; // used to capture pid values for logging
// Calculate Earth Frame Z acceleration
z_accel_meas = -(_ahrs.get_accel_ef().z + GRAVITY_MSS) * 100.0f;
// reset target altitude if this controller has just been engaged
if (now - _last_update_accel_ms > 100) {
// Reset Filter
_accel_error.z = 0;
} else {
// calculate accel error and Filter with fc = 2 Hz
// To-Do: replace constant below with one that is adjusted for update rate
_accel_error.z = _accel_error.z + 0.11164f * (constrain_float(accel_target_z - z_accel_meas, -32000, 32000) - _accel_error.z);
}
_last_update_accel_ms = now;
// separately calculate p, i, d values for logging
p = _pid_alt_accel.get_p(_accel_error.z);
// get i term
i = _pid_alt_accel.get_integrator();
// update i term as long as we haven't breached the limits or the I term will certainly reduce
// To-Do: should this be replaced with limits check from attitude_controller?
if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) {
i = _pid_alt_accel.get_i(_accel_error.z, _dt);
}
// get d term
d = _pid_alt_accel.get_d(_accel_error.z, _dt);
// To-Do: pull min/max throttle from motors
// To-Do: where to get hover throttle?
// To-Do: we had a contraint here but it's now removed, is this ok? with the motors library handle it ok?
_attitude_control.set_throttle_out((int16_t)p+i+d+_throttle_hover, true);
// to-do add back in PID logging?
}
///
/// position controller
///
/// set_accel_xy - set horizontal acceleration in cm/s/s
/// calc_leash_length_xy should be called afterwards
void AC_PosControl::set_accel_xy(float accel_cmss)
{
if (fabs(_accel_cms-accel_cmss) > 1.0f) {
_accel_cms = accel_cmss;
_flags.recalc_leash_xy = true;
}
}
/// set_speed_xy - set horizontal speed maximum in cm/s
/// calc_leash_length_xy should be called afterwards
void AC_PosControl::set_speed_xy(float speed_cms)
{
if (fabs(_speed_cms-speed_cms) > 1.0f) {
_speed_cms = speed_cms;
_flags.recalc_leash_xy = true;
}
}
/// set_pos_target in cm from home
void AC_PosControl::set_pos_target(const Vector3f& position)
{
_pos_target = position;
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
}
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
/// distance_max allows limiting distance to stopping point
/// results placed in stopping_position vector
/// set_accel_xy() should be called before this method to set vehicle acceleration
/// set_leash_length() should have been called before this method
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const
{
Vector3f curr_pos = _inav.get_position();
Vector3f curr_vel = _inav.get_velocity();
float linear_distance; // the distance at which we swap from a linear to sqrt response
float linear_velocity; // the velocity above which we swap from a linear to sqrt response
float stopping_dist; // the distance within the vehicle can stop
float kP = _pi_pos_lat.kP();
// calculate current velocity
float vel_total = safe_sqrt(curr_vel.x*curr_vel.x + curr_vel.y*curr_vel.y);
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
if (vel_total < 10.0f || kP <= 0.0f || _accel_cms <= 0.0f) {
stopping_point = curr_pos;
return;
}
// calculate point at which velocity switches from linear to sqrt
linear_velocity = _accel_cms/kP;
// calculate distance within which we can stop
if (vel_total < linear_velocity) {
stopping_dist = vel_total/kP;
} else {
linear_distance = _accel_cms/(2.0f*kP*kP);
stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms);
}
// constrain stopping distance
stopping_dist = constrain_float(stopping_dist, 0, _leash);
// convert the stopping distance into a stopping point using velocity vector
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total);
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total);
}
/// get_distance_to_target - get horizontal distance to loiter target in cm
float AC_PosControl::get_distance_to_target() const
{
return _distance_to_target;
}
/// update_pos_controller - run the horizontal position controller - should be called at 100hz or higher
void AC_PosControl::update_pos_controller(bool use_desired_velocity)
{
// catch if we've just been started
uint32_t now = hal.scheduler->millis();
if ((now - _last_update_ms) >= 1000) {
_last_update_ms = now;
reset_I_xy();
_xy_step = 0;
}
// check if xy leash needs to be recalculated
calc_leash_length_xy();
// reset step back to 0 if loiter or waypoint parents have triggered an update and we completed the last full cycle
if (_flags.force_recalc_xy && _xy_step > 3) {
_flags.force_recalc_xy = false;
_xy_step = 0;
}
// run loiter steps
switch (_xy_step) {
case 0:
// capture time since last iteration
_dt_xy = (now - _last_update_ms) / 1000.0f;
_last_update_ms = now;
// translate any adjustments from pilot to loiter target
desired_vel_to_pos(_dt_xy);
_xy_step++;
break;
case 1:
// run position controller's position error to desired velocity step
pos_to_rate_xy(use_desired_velocity,_dt_xy);
_xy_step++;
break;
case 2:
// run position controller's velocity to acceleration step
rate_to_accel_xy(_dt_xy);
_xy_step++;
break;
case 3:
// run position controller's acceleration to lean angle step
accel_to_lean_angles();
_xy_step++;
break;
}
}
///
/// private methods
///
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
/// should be called whenever the speed, acceleration or position kP is modified
void AC_PosControl::calc_leash_length_xy()
{
if (_flags.recalc_leash_xy) {
_leash = calc_leash_length(_speed_cms, _accel_cms, _pi_pos_lon.kP());
_flags.recalc_leash_xy = false;
}
}
/// desired_vel_to_pos - move position target using desired velocities
void AC_PosControl::desired_vel_to_pos(float nav_dt)
{
Vector2f target_vel_adj;
float vel_desired_total;
// range check nav_dt
if( nav_dt < 0 ) {
return;
}
// constrain and scale the desired velocity
vel_desired_total = safe_sqrt(_vel_desired.x*_vel_desired.x + _vel_desired.y*_vel_desired.y);
if (vel_desired_total > _speed_cms && vel_desired_total > 0.0f) {
_vel_desired.x = _speed_cms * _vel_desired.x/vel_desired_total;
_vel_desired.y = _speed_cms * _vel_desired.y/vel_desired_total;
}
// update target position
_pos_target.x += _vel_desired.x * nav_dt;
_pos_target.y += _vel_desired.y * nav_dt;
}
/// pos_to_rate_xy - horizontal position error to velocity controller
/// converts position (_pos_target) to target velocity (_vel_target)
/// when use_desired_rate is set to true:
/// desired velocity (_vel_desired) is combined into final target velocity and
/// velocity due to position error is reduce to a maximum of 1m/s
void AC_PosControl::pos_to_rate_xy(bool use_desired_rate, float dt)
{
Vector3f curr_pos = _inav.get_position();
float linear_distance; // the distance we swap between linear and sqrt velocity response
float kP = _pi_pos_lat.kP();
// avoid divide by zero
if (kP <= 0.0f) {
_vel_target.x = 0.0;
_vel_target.y = 0.0;
}else{
// calculate distance error
_pos_error.x = _pos_target.x - curr_pos.x;
_pos_error.y = _pos_target.y - curr_pos.y;
// constrain target position to within reasonable distance of current location
_distance_to_target = safe_sqrt(_pos_error.x*_pos_error.x + _pos_error.y*_pos_error.y);
if (_distance_to_target > _leash && _distance_to_target > 0.0f) {
_pos_target.x = curr_pos.x + _leash * _pos_error.x/_distance_to_target;
_pos_target.y = curr_pos.y + _leash * _pos_error.y/_distance_to_target;
// re-calculate distance error
_pos_error.x = _pos_target.x - curr_pos.x;
_pos_error.y = _pos_target.y - curr_pos.y;
_distance_to_target = _leash;
}
// calculate the distance at which we swap between linear and sqrt velocity response
linear_distance = _accel_cms/(2.0f*kP*kP);
if (_distance_to_target > 2.0f*linear_distance) {
// velocity response grows with the square root of the distance
float vel_sqrt = safe_sqrt(2.0f*_accel_cms*(_distance_to_target-linear_distance));
_vel_target.x = vel_sqrt * _pos_error.x/_distance_to_target;
_vel_target.y = vel_sqrt * _pos_error.y/_distance_to_target;
}else{
// velocity response grows linearly with the distance
_vel_target.x = _pi_pos_lat.kP() * _pos_error.x;
_vel_target.y = _pi_pos_lon.kP() * _pos_error.y;
}
// decide velocity limit due to position error
float vel_max_from_pos_error;
if (use_desired_rate) {
// if desired velocity (i.e. velocity feed forward) is being used we limit the maximum velocity correction due to position error to 2m/s
vel_max_from_pos_error = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR;
}else{
// if desired velocity is not used, we allow position error to increase speed up to maximum speed
vel_max_from_pos_error = _speed_cms;
}
// scale velocity to stays within limits
float vel_total = safe_sqrt(_vel_target.x*_vel_target.x + _vel_target.y*_vel_target.y);
if (vel_total > vel_max_from_pos_error) {
_vel_target.x = vel_max_from_pos_error * _vel_target.x/vel_total;
_vel_target.y = vel_max_from_pos_error * _vel_target.y/vel_total;
}
// add desired velocity (i.e. feed forward).
if (use_desired_rate) {
_vel_target.x += _vel_desired.x;
_vel_target.y += _vel_desired.y;
}
}
}
/// rate_to_accel_xy - horizontal desired rate to desired acceleration
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
void AC_PosControl::rate_to_accel_xy(float dt)
{
const Vector3f &vel_curr = _inav.get_velocity(); // current velocity in cm/s
float accel_total; // total acceleration in cm/s/s
// reset accel limit flag
_limit.accel_xy = false;
// reset last velocity if this controller has just been engaged or dt is zero
if (dt == 0.0) {
_accel_target.x = 0;
_accel_target.y = 0;
} else {
// feed forward desired acceleration calculation
_accel_target.x = (_vel_target.x - _vel_last.x)/dt;
_accel_target.y = (_vel_target.y - _vel_last.y)/dt;
}
// store this iteration's velocities for the next iteration
_vel_last.x = _vel_target.x;
_vel_last.y = _vel_target.y;
// calculate velocity error
_vel_error.x = _vel_target.x - vel_curr.x;
_vel_error.y = _vel_target.y - vel_curr.y;
// combine feed foward accel with PID output from velocity error
// To-Do: check accel limit flag before adding I term
_accel_target.x += _pid_rate_lat.get_pid(_vel_error.x, dt);
_accel_target.y += _pid_rate_lon.get_pid(_vel_error.y, dt);
// scale desired acceleration if it's beyond acceptable limit
// To-Do: move this check down to the accel_to_lean_angle method?
accel_total = safe_sqrt(_accel_target.x*_accel_target.x + _accel_target.y*_accel_target.y);
if (accel_total > POSCONTROL_ACCEL_XY_MAX) {
_accel_target.x = POSCONTROL_ACCEL_XY_MAX * _accel_target.x/accel_total;
_accel_target.y = POSCONTROL_ACCEL_XY_MAX * _accel_target.y/accel_total;
_limit.accel_xy = true; // unused
}
}
/// accel_to_lean_angles - horizontal desired acceleration to lean angles
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void AC_PosControl::accel_to_lean_angles()
{
float accel_right, accel_forward;
float lean_angle_max = _attitude_control.lean_angle_max();
// To-Do: add 1hz filter to accel_lat, accel_lon
// rotate accelerations into body forward-right frame
accel_forward = _accel_target.x*_cos_yaw + _accel_target.y*_sin_yaw;
accel_right = -_accel_target.x*_sin_yaw + _accel_target.y*_cos_yaw;
// update angle targets that will be passed to stabilize controller
_roll_target = constrain_float(fast_atan(accel_right*_cos_pitch/(GRAVITY_MSS * 100))*(18000/M_PI), -lean_angle_max, lean_angle_max);
_pitch_target = constrain_float(fast_atan(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI),-lean_angle_max, lean_angle_max);
}
/// reset_I_xy - clears I terms from loiter PID controller
void AC_PosControl::reset_I_xy()
{
_pi_pos_lon.reset_I();
_pi_pos_lat.reset_I();
_pid_rate_lon.reset_I();
_pid_rate_lat.reset_I();
// set last velocity to current velocity
_vel_last = _inav.get_velocity();
}
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const
{
float leash_length;
// sanity check acceleration and avoid divide by zero
if (accel_cms <= 0.0f) {
accel_cms = POSCONTROL_ACCELERATION_MIN;
}
// avoid divide by zero
if (kP <= 0.0f) {
return POSCONTROL_LEASH_LENGTH_MIN;
}
// calculate leash length
if(speed_cms <= accel_cms / kP) {
// linear leash length based on speed close in
leash_length = speed_cms / kP;
}else{
// leash length grows at sqrt of speed further out
leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms));
}
// ensure leash is at least 1m long
if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) {
leash_length = POSCONTROL_LEASH_LENGTH_MIN;
}
return leash_length;
}