mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 18:18:49 -04:00
247 lines
6.6 KiB
C++
247 lines
6.6 KiB
C++
/// @file AC_PID_2D.cpp
|
|
/// @brief Generic PID algorithm
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AC_PID_2D.h"
|
|
|
|
#define AC_PID_2D_FILT_HZ_DEFAULT 20.0f // default input filter frequency
|
|
#define AC_PID_2D_FILT_HZ_MIN 0.01f // minimum input filter frequency
|
|
#define AC_PID_2D_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency
|
|
#define AC_PID_2D_FILT_D_HZ_MIN 0.005f // minimum input filter frequency
|
|
|
|
const AP_Param::GroupInfo AC_PID_2D::var_info[] = {
|
|
// @Param: P
|
|
// @DisplayName: PID Proportional Gain
|
|
// @Description: P Gain which produces an output value that is proportional to the current error value
|
|
AP_GROUPINFO("P", 0, AC_PID_2D, _kp, 0),
|
|
|
|
// @Param: I
|
|
// @DisplayName: PID Integral Gain
|
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
|
|
AP_GROUPINFO("I", 1, AC_PID_2D, _ki, 0),
|
|
|
|
// @Param: IMAX
|
|
// @DisplayName: PID Integral Maximum
|
|
// @Description: The maximum/minimum value that the I term can output
|
|
AP_GROUPINFO("IMAX", 2, AC_PID_2D, _imax, 0),
|
|
|
|
// @Param: FILT
|
|
// @DisplayName: PID Input filter frequency in Hz
|
|
// @Description: Input filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO("FILT", 3, AC_PID_2D, _filt_hz, AC_PID_2D_FILT_HZ_DEFAULT),
|
|
|
|
// @Param: D
|
|
// @DisplayName: PID Derivative Gain
|
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
|
|
AP_GROUPINFO("D", 4, AC_PID_2D, _kd, 0),
|
|
|
|
// @Param: D_FILT
|
|
// @DisplayName: D term filter frequency in Hz
|
|
// @Description: D term filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO("D_FILT", 5, AC_PID_2D, _filt_d_hz, AC_PID_2D_FILT_D_HZ_DEFAULT),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Constructor
|
|
AC_PID_2D::AC_PID_2D(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt) :
|
|
_dt(dt)
|
|
{
|
|
// load parameter values from eeprom
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
_kp = initial_p;
|
|
_ki = initial_i;
|
|
_kd = initial_d;
|
|
_imax = fabsf(initial_imax);
|
|
filt_hz(initial_filt_hz);
|
|
filt_d_hz(initial_filt_d_hz);
|
|
|
|
// reset input filter to first value received
|
|
_flags._reset_filter = true;
|
|
}
|
|
|
|
// set_dt - set time step in seconds
|
|
void AC_PID_2D::set_dt(float dt)
|
|
{
|
|
// set dt and calculate the input filter alpha
|
|
_dt = dt;
|
|
calc_filt_alpha();
|
|
calc_filt_alpha_d();
|
|
}
|
|
|
|
// filt_hz - set input filter hz
|
|
void AC_PID_2D::filt_hz(float hz)
|
|
{
|
|
_filt_hz.set(fabsf(hz));
|
|
|
|
// sanity check _filt_hz
|
|
_filt_hz = MAX(_filt_hz, AC_PID_2D_FILT_HZ_MIN);
|
|
|
|
// calculate the input filter alpha
|
|
calc_filt_alpha();
|
|
}
|
|
|
|
// filt_d_hz - set input filter hz
|
|
void AC_PID_2D::filt_d_hz(float hz)
|
|
{
|
|
_filt_d_hz.set(fabsf(hz));
|
|
|
|
// sanity check _filt_hz
|
|
_filt_d_hz = MAX(_filt_d_hz, AC_PID_2D_FILT_D_HZ_MIN);
|
|
|
|
// calculate the input filter alpha
|
|
calc_filt_alpha_d();
|
|
}
|
|
|
|
// set_input - set input to PID controller
|
|
// input is filtered before the PID controllers are run
|
|
// this should be called before any other calls to get_p, get_i or get_d
|
|
void AC_PID_2D::set_input(const Vector2f &input)
|
|
{
|
|
// don't process inf or NaN
|
|
if (!isfinite(input.x) || !isfinite(input.y)) {
|
|
return;
|
|
}
|
|
|
|
// reset input filter to value received
|
|
if (_flags._reset_filter) {
|
|
_flags._reset_filter = false;
|
|
_input = input;
|
|
}
|
|
|
|
// update filter and calculate derivative
|
|
const Vector2f input_delta = (input - _input) * _filt_alpha;
|
|
_input += input_delta;
|
|
|
|
set_input_filter_d(input_delta);
|
|
}
|
|
|
|
// set_input_filter_d - set input to PID controller
|
|
// only input to the D portion of the controller is filtered
|
|
// this should be called before any other calls to get_p, get_i or get_d
|
|
void AC_PID_2D::set_input_filter_d(const Vector2f& input_delta)
|
|
{
|
|
// don't process inf or NaN
|
|
if (!isfinite(input_delta.x) && !isfinite(input_delta.y)) {
|
|
return;
|
|
}
|
|
|
|
// reset input filter
|
|
if (_flags._reset_filter) {
|
|
_flags._reset_filter = false;
|
|
_derivative.x = 0.0f;
|
|
_derivative.y = 0.0f;
|
|
}
|
|
|
|
// update filter and calculate derivative
|
|
if (is_positive(_dt)) {
|
|
const Vector2f derivative = input_delta / _dt;
|
|
const Vector2f delta_derivative = (derivative - _derivative) * _filt_alpha_d;
|
|
_derivative += delta_derivative;
|
|
}
|
|
}
|
|
|
|
Vector2f AC_PID_2D::get_p() const
|
|
{
|
|
return (_input * _kp);
|
|
}
|
|
|
|
Vector2f AC_PID_2D::get_i()
|
|
{
|
|
if (!is_zero(_ki) && !is_zero(_dt)) {
|
|
_integrator += (_input * _ki) * _dt;
|
|
const float integrator_length = _integrator.length();
|
|
if ((integrator_length > _imax) && is_positive(integrator_length)) {
|
|
_integrator *= (_imax / integrator_length);
|
|
}
|
|
return _integrator;
|
|
}
|
|
return Vector2f();
|
|
}
|
|
|
|
// get_i_shrink - get_i but do not allow integrator to grow in length (it may shrink)
|
|
Vector2f AC_PID_2D::get_i_shrink()
|
|
{
|
|
if (!is_zero(_ki) && !is_zero(_dt)) {
|
|
const float integrator_length_orig = MIN(_integrator.length(), _imax);
|
|
_integrator += (_input * _ki) * _dt;
|
|
const float integrator_length_new = _integrator.length();
|
|
if ((integrator_length_new > integrator_length_orig) && is_positive(integrator_length_new)) {
|
|
_integrator *= (integrator_length_orig / integrator_length_new);
|
|
}
|
|
return _integrator;
|
|
}
|
|
return Vector2f();
|
|
}
|
|
|
|
Vector2f AC_PID_2D::get_d()
|
|
{
|
|
// derivative component
|
|
return Vector2f(_kd * _derivative.x, _kd * _derivative.y);
|
|
}
|
|
|
|
Vector2f AC_PID_2D::get_pid()
|
|
{
|
|
return get_p() + get_i() + get_d();
|
|
}
|
|
|
|
void AC_PID_2D::reset_I()
|
|
{
|
|
_integrator.zero();
|
|
}
|
|
|
|
void AC_PID_2D::load_gains()
|
|
{
|
|
_kp.load();
|
|
_ki.load();
|
|
_kd.load();
|
|
_imax.load();
|
|
_imax = fabsf(_imax);
|
|
_filt_hz.load();
|
|
_filt_d_hz.load();
|
|
|
|
// calculate the input filter alpha
|
|
calc_filt_alpha();
|
|
calc_filt_alpha_d();
|
|
}
|
|
|
|
// save_gains - save gains to eeprom
|
|
void AC_PID_2D::save_gains()
|
|
{
|
|
_kp.save();
|
|
_ki.save();
|
|
_kd.save();
|
|
_imax.save();
|
|
_filt_hz.save();
|
|
_filt_d_hz.save();
|
|
}
|
|
|
|
// calc_filt_alpha - recalculate the input filter alpha
|
|
void AC_PID_2D::calc_filt_alpha()
|
|
{
|
|
if (is_zero(_filt_hz)) {
|
|
_filt_alpha = 1.0f;
|
|
return;
|
|
}
|
|
|
|
// calculate alpha
|
|
const float rc = 1/(M_2PI*_filt_hz);
|
|
_filt_alpha = _dt / (_dt + rc);
|
|
}
|
|
|
|
// calc_filt_alpha - recalculate the input filter alpha
|
|
void AC_PID_2D::calc_filt_alpha_d()
|
|
{
|
|
if (is_zero(_filt_d_hz)) {
|
|
_filt_alpha_d = 1.0f;
|
|
return;
|
|
}
|
|
|
|
// calculate alpha
|
|
const float rc = 1/(M_2PI*_filt_d_hz);
|
|
_filt_alpha_d = _dt / (_dt + rc);
|
|
}
|