mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 13:18:28 -04:00
436 lines
12 KiB
C++
436 lines
12 KiB
C++
#include "Sub.h"
|
|
#include "version.h"
|
|
|
|
/*****************************************************************************
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
* We will determine later if we are actually on the ground and process a
|
|
* ground start in that case.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// This is the help function
|
|
int8_t Sub::main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf("Commands:\n"
|
|
" logs\n"
|
|
" setup\n"
|
|
" test\n"
|
|
" reboot\n"
|
|
"\n");
|
|
return (0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
const struct Menu::command main_menu_commands[] = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", MENU_FUNC(process_logs)},
|
|
{"setup", MENU_FUNC(setup_mode)},
|
|
{"test", MENU_FUNC(test_mode)},
|
|
{"reboot", MENU_FUNC(reboot_board)},
|
|
{"help", MENU_FUNC(main_menu_help)},
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
int8_t Sub::reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
hal.scheduler->reboot(false);
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
void Sub::run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
// disable main_loop failsafe
|
|
failsafe_disable();
|
|
|
|
// cut the engines
|
|
if (motors.armed()) {
|
|
motors.armed(false);
|
|
motors.output();
|
|
}
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void mavlink_delay_cb_static()
|
|
{
|
|
sub.mavlink_delay_cb();
|
|
}
|
|
|
|
|
|
static void failsafe_check_static()
|
|
{
|
|
sub.failsafe_check();
|
|
}
|
|
|
|
void Sub::init_ardupilot()
|
|
{
|
|
if (!hal.gpio->usb_connected()) {
|
|
// USB is not connected, this means UART0 may be a Xbee, with
|
|
// its darned bricking problem. We can't write to it for at
|
|
// least one second after powering up. Simplest solution for
|
|
// now is to delay for 1 second. Something more elegant may be
|
|
// added later
|
|
hal.scheduler->delay(1000);
|
|
}
|
|
|
|
// initialise serial port
|
|
serial_manager.init_console();
|
|
|
|
cliSerial->printf("\n\nInit " FIRMWARE_STRING
|
|
"\n\nFree RAM: %u\n",
|
|
(unsigned)hal.util->available_memory());
|
|
|
|
//
|
|
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
|
|
//
|
|
report_version();
|
|
|
|
// load parameters from EEPROM
|
|
load_parameters();
|
|
|
|
BoardConfig.init();
|
|
|
|
// initialise serial port
|
|
serial_manager.init();
|
|
|
|
// init cargo gripper
|
|
#if GRIPPER_ENABLED == ENABLED
|
|
g2.gripper.init();
|
|
#endif
|
|
|
|
// initialise notify system
|
|
notify.init(true);
|
|
|
|
// initialise battery monitor
|
|
battery.init();
|
|
|
|
barometer.init();
|
|
|
|
celsius.init();
|
|
|
|
// Register the mavlink service callback. This will run
|
|
// anytime there are more than 5ms remaining in a call to
|
|
// hal.scheduler->delay.
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
|
|
|
|
// we start by assuming USB connected, as we initialed the serial
|
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
|
|
ap.usb_connected = true;
|
|
check_usb_mux();
|
|
|
|
// setup telem slots with serial ports
|
|
for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
|
|
gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
|
|
}
|
|
|
|
// identify ourselves correctly with the ground station
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
log_init();
|
|
#endif
|
|
|
|
gcs().set_dataflash(&DataFlash);
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up motors and output to escs
|
|
init_joystick(); // joystick initialization
|
|
|
|
// initialise which outputs Servo and Relay events can use
|
|
ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());
|
|
|
|
relay.init();
|
|
|
|
/*
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
* the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
|
|
|
|
// Do GPS init
|
|
gps.init(&DataFlash, serial_manager);
|
|
|
|
if (g.compass_enabled) {
|
|
init_compass();
|
|
}
|
|
|
|
#if OPTFLOW == ENABLED
|
|
// make optflow available to AHRS
|
|
ahrs.set_optflow(&optflow);
|
|
#endif
|
|
|
|
// init Location class
|
|
Location_Class::set_ahrs(&ahrs);
|
|
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
|
|
Location_Class::set_terrain(&terrain);
|
|
wp_nav.set_terrain(&terrain);
|
|
#endif
|
|
|
|
#if AVOIDANCE_ENABLED == ENABLED
|
|
wp_nav.set_avoidance(&avoid);
|
|
#endif
|
|
|
|
pos_control.set_dt(MAIN_LOOP_SECONDS);
|
|
|
|
// init the optical flow sensor
|
|
init_optflow();
|
|
|
|
#if MOUNT == ENABLED
|
|
// initialise camera mount
|
|
camera_mount.init(&DataFlash, serial_manager);
|
|
#endif
|
|
|
|
#ifdef USERHOOK_INIT
|
|
USERHOOK_INIT
|
|
#endif
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
if (g.cli_enabled) {
|
|
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
|
|
cliSerial->println(msg);
|
|
if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != NULL)) {
|
|
gcs_chan[1].get_uart()->println(msg);
|
|
}
|
|
if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != NULL)) {
|
|
gcs_chan[2].get_uart()->println(msg);
|
|
}
|
|
}
|
|
#endif // CLI_ENABLED
|
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED
|
|
while (barometer.get_last_update() == 0) {
|
|
// the barometer begins updating when we get the first
|
|
// HIL_STATE message
|
|
gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
|
|
hal.scheduler->delay(1000);
|
|
}
|
|
|
|
// set INS to HIL mode
|
|
ins.set_hil_mode();
|
|
#endif
|
|
|
|
// read Baro pressure at ground
|
|
//-----------------------------
|
|
init_barometer(false);
|
|
barometer.update();
|
|
|
|
for (uint8_t i = 0; i < barometer.num_instances(); i++) {
|
|
if (barometer.get_type(i) == AP_Baro::BARO_TYPE_WATER && barometer.healthy(i)) {
|
|
barometer.set_primary_baro(i);
|
|
ap.depth_sensor_present = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ap.depth_sensor_present) {
|
|
// We only have onboard baro
|
|
// No external underwater depth sensor detected
|
|
barometer.set_primary_baro(0);
|
|
EKF2.set_baro_alt_noise(10.0f); // Readings won't correspond with rest of INS
|
|
EKF3.set_baro_alt_noise(10.0f);
|
|
} else {
|
|
EKF2.set_baro_alt_noise(0.1f);
|
|
EKF3.set_baro_alt_noise(0.1f);
|
|
}
|
|
|
|
leak_detector.init();
|
|
|
|
// backwards compatibility
|
|
if (attitude_control.get_accel_yaw_max() < 110000.0f) {
|
|
attitude_control.save_accel_yaw_max(110000.0f);
|
|
}
|
|
|
|
last_pilot_heading = ahrs.yaw_sensor;
|
|
|
|
// initialise rangefinder
|
|
#if RANGEFINDER_ENABLED == ENABLED
|
|
init_rangefinder();
|
|
#endif
|
|
|
|
// initialise AP_RPM library
|
|
#if RPM_ENABLED == ENABLED
|
|
rpm_sensor.init();
|
|
#endif
|
|
|
|
// initialise mission library
|
|
mission.init();
|
|
|
|
startup_INS_ground();
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
// mid-flight, so set the serial ports non-blocking once we are
|
|
// ready to fly
|
|
serial_manager.set_blocking_writes_all(false);
|
|
|
|
// enable CPU failsafe
|
|
failsafe_enable();
|
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
|
|
ins.set_dataflash(&DataFlash);
|
|
|
|
// init vehicle capabilties
|
|
init_capabilities();
|
|
|
|
cliSerial->print("\nReady to FLY ");
|
|
|
|
// flag that initialisation has completed
|
|
ap.initialised = true;
|
|
}
|
|
|
|
|
|
//******************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//******************************************************************************
|
|
void Sub::startup_INS_ground()
|
|
{
|
|
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
|
|
ahrs.init();
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_SUBMARINE);
|
|
|
|
// Warm up and calibrate gyro offsets
|
|
ins.init(scheduler.get_loop_rate_hz());
|
|
|
|
// reset ahrs including gyro bias
|
|
ahrs.reset();
|
|
}
|
|
|
|
// calibrate gyros - returns true if succesfully calibrated
|
|
bool Sub::calibrate_gyros()
|
|
{
|
|
// gyro offset calibration
|
|
sub.ins.init_gyro();
|
|
|
|
// reset ahrs gyro bias
|
|
if (sub.ins.gyro_calibrated_ok_all()) {
|
|
sub.ahrs.reset_gyro_drift();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// position_ok - returns true if the horizontal absolute position is ok and home position is set
|
|
bool Sub::position_ok()
|
|
{
|
|
// return false if ekf failsafe has triggered
|
|
if (failsafe.ekf) {
|
|
return false;
|
|
}
|
|
|
|
// check ekf position estimate
|
|
return (ekf_position_ok() || optflow_position_ok());
|
|
}
|
|
|
|
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set
|
|
bool Sub::ekf_position_ok()
|
|
{
|
|
if (!ahrs.have_inertial_nav()) {
|
|
// do not allow navigation with dcm position
|
|
return false;
|
|
}
|
|
|
|
// with EKF use filter status and ekf check
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
// if disarmed we accept a predicted horizontal position
|
|
if (!motors.armed()) {
|
|
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
|
|
} else {
|
|
// once armed we require a good absolute position and EKF must not be in const_pos_mode
|
|
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
|
|
}
|
|
}
|
|
|
|
// optflow_position_ok - returns true if optical flow based position estimate is ok
|
|
bool Sub::optflow_position_ok()
|
|
{
|
|
#if OPTFLOW != ENABLED
|
|
return false;
|
|
#else
|
|
// return immediately if optflow is not enabled or EKF not used
|
|
if (!optflow.enabled() || !ahrs.have_inertial_nav()) {
|
|
return false;
|
|
}
|
|
|
|
// get filter status from EKF
|
|
nav_filter_status filt_status = inertial_nav.get_filter_status();
|
|
|
|
// if disarmed we accept a predicted horizontal relative position
|
|
if (!motors.armed()) {
|
|
return (filt_status.flags.pred_horiz_pos_rel);
|
|
} else {
|
|
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// update_auto_armed - update status of auto_armed flag
|
|
void Sub::update_auto_armed()
|
|
{
|
|
// disarm checks
|
|
if (ap.auto_armed) {
|
|
// if motors are disarmed, auto_armed should also be false
|
|
if (!motors.armed()) {
|
|
set_auto_armed(false);
|
|
return;
|
|
}
|
|
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
|
|
if (mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.manual_control) {
|
|
set_auto_armed(false);
|
|
}
|
|
} else {
|
|
// arm checks
|
|
// if motors are armed and throttle is above zero auto_armed should be true
|
|
if (motors.armed()) {
|
|
set_auto_armed(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sub::check_usb_mux(void)
|
|
{
|
|
bool usb_check = hal.gpio->usb_connected();
|
|
if (usb_check == ap.usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
ap.usb_connected = usb_check;
|
|
}
|
|
|
|
/*
|
|
should we log a message type now?
|
|
*/
|
|
bool Sub::should_log(uint32_t mask)
|
|
{
|
|
#if LOGGING_ENABLED == ENABLED
|
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
|
|
return false;
|
|
}
|
|
bool ret = motors.armed() || DataFlash.log_while_disarmed();
|
|
if (ret && !DataFlash.logging_started() && !in_log_download) {
|
|
start_logging();
|
|
}
|
|
return ret;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|