ardupilot/libraries/AP_Proximity/AP_Proximity_MorseSITL.cpp
2018-12-14 09:18:23 +09:00

105 lines
3.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "AP_Proximity_MorseSITL.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAX_RANGE 200.0f
#define PROXIMITY_ACCURACY 0.1f
/*
The constructor also initialises the proximity sensor.
*/
AP_Proximity_MorseSITL::AP_Proximity_MorseSITL(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state):
AP_Proximity_Backend(_frontend, _state),
sitl(AP::sitl())
{
}
// update the state of the sensor
void AP_Proximity_MorseSITL::update(void)
{
SITL::vector3f_array &points = sitl->state.scanner.points;
SITL::float_array &ranges = sitl->state.scanner.ranges;
if (points.length != ranges.length ||
points.length == 0) {
set_status(AP_Proximity::Proximity_NoData);
return;
}
set_status(AP_Proximity::Proximity_Good);
memset(_distance_valid, 0, sizeof(_distance_valid));
memset(_angle, 0, sizeof(_angle));
memset(_distance, 0, sizeof(_distance));
// only use 8 sectors to match RPLidar
const uint8_t nsectors = MIN(8, PROXIMITY_SECTORS_MAX);
const uint16_t degrees_per_sector = 360 / nsectors;
for (uint16_t i=0; i<points.length; i++) {
Vector3f &point = points.data[i];
float &range = ranges.data[i];
distance_maximum = MAX(distance_maximum, range);
if (point.is_zero()) {
continue;
}
float angle_deg = wrap_360(degrees(atan2f(-point.y, point.x)));
uint16_t angle_rounded = uint16_t(angle_deg+0.5);
uint8_t sector = wrap_360(angle_rounded + 22.5f) / degrees_per_sector;
if (!_distance_valid[sector] || range < _distance[sector]) {
_distance_valid[sector] = true;
_distance[sector] = range;
_angle[sector] = angle_deg;
update_boundary_for_sector(sector);
}
}
#if 0
printf("npoints=%u\n", points.length);
for (uint16_t i=0; i<nsectors; i++) {
printf("sector[%u] ang=%.1f dist=%.1f\n", i, _angle[i], _distance[i]);
}
#endif
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity_MorseSITL::distance_max() const
{
// we don't have a data field from Morse for max range, so we use the max
// we've ever seen
return distance_maximum;
}
float AP_Proximity_MorseSITL::distance_min() const
{
return 0.0f;
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_MorseSITL::get_upward_distance(float &distance) const
{
// we don't have an upward facing laser
return false;
}
#endif // CONFIG_HAL_BOARD