ardupilot/ArduPlane/GCS_Mavlink.cpp
2016-05-24 17:10:41 +10:00

2246 lines
72 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Plane.h"
#include "version.h"
// default sensors are present and healthy: gyro, accelerometer, barometer, rate_control, attitude_stabilization, yaw_position, altitude control, x/y position control, motor_control
#define MAVLINK_SENSOR_PRESENT_DEFAULT (MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE | MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL | MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION | MAV_SYS_STATUS_SENSOR_YAW_POSITION | MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL | MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL | MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS | MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_RC_RECEIVER)
void Plane::send_heartbeat(mavlink_channel_t chan)
{
uint8_t base_mode = MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
uint8_t system_status;
uint32_t custom_mode = control_mode;
if (failsafe.state != FAILSAFE_NONE) {
system_status = MAV_STATE_CRITICAL;
} else if (plane.crash_state.is_crashed) {
system_status = MAV_STATE_EMERGENCY;
} else if (is_flying()) {
system_status = MAV_STATE_ACTIVE;
} else {
system_status = MAV_STATE_STANDBY;
}
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
switch (control_mode) {
case MANUAL:
case TRAINING:
case ACRO:
base_mode = MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case FLY_BY_WIRE_B:
case QSTABILIZE:
case QHOVER:
case QLOITER:
case QLAND:
case CRUISE:
base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
case QRTL:
base_mode = MAV_MODE_FLAG_GUIDED_ENABLED |
MAV_MODE_FLAG_STABILIZE_ENABLED;
// note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// APM does in any mode, as that is defined as "system finds its own goal
// positions", which APM does not currently do
break;
case INITIALISING:
system_status = MAV_STATE_CALIBRATING;
break;
}
if (!training_manual_pitch || !training_manual_roll) {
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (control_mode != MANUAL && control_mode != INITIALISING) {
// stabiliser of some form is enabled
base_mode |= MAV_MODE_FLAG_STABILIZE_ENABLED;
}
if (g.stick_mixing != STICK_MIXING_DISABLED && control_mode != INITIALISING) {
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
}
#if HIL_SUPPORT
if (g.hil_mode == 1) {
base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
}
#endif
// we are armed if we are not initialising
if (control_mode != INITIALISING && arming.is_armed()) {
base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
gcs[chan-MAVLINK_COMM_0].send_heartbeat(MAV_TYPE_FIXED_WING,
base_mode,
custom_mode,
system_status);
}
void Plane::send_attitude(mavlink_channel_t chan)
{
const Vector3f &omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
millis(),
ahrs.roll,
ahrs.pitch - radians(g.pitch_trim_cd*0.01f),
ahrs.yaw,
omega.x,
omega.y,
omega.z);
}
#if GEOFENCE_ENABLED == ENABLED
void Plane::send_fence_status(mavlink_channel_t chan)
{
geofence_send_status(chan);
}
#endif
void Plane::send_extended_status1(mavlink_channel_t chan)
{
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// default sensors present
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT;
// first what sensors/controllers we have
if (g.compass_enabled) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present
}
if (airspeed.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (geofence_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (aparm.throttle_min < 0) {
control_sensors_present |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control, geofence and motor output which we will set individually
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & ~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & ~MAV_SYS_STATUS_SENSOR_YAW_POSITION & ~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_GEOFENCE);
if (airspeed.enabled() && airspeed.use()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (geofence_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
switch (control_mode) {
case MANUAL:
break;
case ACRO:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
break;
case STABILIZE:
case FLY_BY_WIRE_A:
case AUTOTUNE:
case QSTABILIZE:
case QHOVER:
case QLAND:
case QLOITER:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case FLY_BY_WIRE_B:
case CRUISE:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
break;
case TRAINING:
if (!training_manual_roll || !training_manual_pitch) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
}
break;
case AUTO:
case RTL:
case LOITER:
case GUIDED:
case CIRCLE:
case QRTL:
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; // altitude control
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control
break;
case INITIALISING:
break;
}
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
// default: all present sensors healthy except baro, 3D_MAG, GPS, DIFFERNTIAL_PRESSURE. GEOFENCE always defaults to healthy.
control_sensors_health = control_sensors_present & ~(MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE |
MAV_SYS_STATUS_SENSOR_3D_MAG |
MAV_SYS_STATUS_SENSOR_GPS |
MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE);
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
if (ahrs.initialised() && !ahrs.healthy()) {
// AHRS subsystem is unhealthy
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (ahrs.have_inertial_nav() && !ins.accel_calibrated_ok_all()) {
// trying to use EKF without properly calibrated accelerometers
control_sensors_health &= ~MAV_SYS_STATUS_AHRS;
}
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#if OPTFLOW == ENABLED
if (optflow.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
if (!ins.get_accel_health_all()) {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (airspeed.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
#if GEOFENCE_ENABLED
if (geofence_breached()) {
control_sensors_health &= ~MAV_SYS_STATUS_GEOFENCE;
}
#endif
if (millis() - failsafe.last_valid_rc_ms < 200) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
} else {
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
int16_t battery_current = -1;
int8_t battery_remaining = -1;
if (battery.has_current() && battery.healthy()) {
battery_remaining = battery.capacity_remaining_pct();
battery_current = battery.current_amps() * 100;
}
#if AP_TERRAIN_AVAILABLE
switch (terrain.status()) {
case AP_Terrain::TerrainStatusDisabled:
break;
case AP_Terrain::TerrainStatusUnhealthy:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
break;
case AP_Terrain::TerrainStatusOK:
control_sensors_present |= MAV_SYS_STATUS_TERRAIN;
control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN;
control_sensors_health |= MAV_SYS_STATUS_TERRAIN;
break;
}
#endif
#if RANGEFINDER_ENABLED == ENABLED
if (rangefinder.num_sensors() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
if (g.rangefinder_landing) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
if (rangefinder.has_data()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION;
}
}
#endif
if (aparm.throttle_min < 0 && channel_throttle->get_servo_out() < 0) {
control_sensors_enabled |= MAV_SYS_STATUS_REVERSE_MOTOR;
control_sensors_health |= MAV_SYS_STATUS_REVERSE_MOTOR;
}
if (AP_Notify::flags.initialising) {
// while initialising the gyros and accels are not enabled
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL);
}
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
(uint16_t)(scheduler.load_average(20000) * 1000),
battery.voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
0, // comm drops %,
0, // comm drops in pkts,
0, 0, 0, 0);
}
void Plane::send_location(mavlink_channel_t chan)
{
uint32_t fix_time_ms;
// if we have a GPS fix, take the time as the last fix time. That
// allows us to correctly calculate velocities and extrapolate
// positions.
// If we don't have a GPS fix then we are dead reckoning, and will
// use the current boot time as the fix time.
if (gps.status() >= AP_GPS::GPS_OK_FIX_2D) {
fix_time_ms = gps.last_fix_time_ms();
} else {
fix_time_ms = millis();
}
const Vector3f &vel = gps.velocity();
mavlink_msg_global_position_int_send(
chan,
fix_time_ms,
current_loc.lat, // in 1E7 degrees
current_loc.lng, // in 1E7 degrees
current_loc.alt * 10UL, // millimeters above sea level
relative_altitude() * 1.0e3f, // millimeters above ground
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * -100, // Z speed cm/s (+ve up)
ahrs.yaw_sensor);
}
void Plane::send_nav_controller_output(mavlink_channel_t chan)
{
mavlink_msg_nav_controller_output_send(
chan,
nav_roll_cd * 0.01f,
nav_pitch_cd * 0.01f,
nav_controller->nav_bearing_cd() * 0.01f,
nav_controller->target_bearing_cd() * 0.01f,
auto_state.wp_distance,
altitude_error_cm * 0.01f,
airspeed_error * 100,
nav_controller->crosstrack_error());
}
void Plane::send_position_target_global_int(mavlink_channel_t chan)
{
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL_INT, // targets are always global altitude
0xFFF8, // ignore everything except the x/y/z components
next_WP_loc.lat, // latitude as 1e7
next_WP_loc.lng, // longitude as 1e7
next_WP_loc.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
void Plane::send_servo_out(mavlink_channel_t chan)
{
// normalized values scaled to -10000 to 10000
// This is used for HIL. Do not change without discussing with
// HIL maintainers
mavlink_msg_rc_channels_scaled_send(
chan,
millis(),
0, // port 0
10000 * channel_roll->norm_output() * (channel_roll->get_reverse()?-1:1),
10000 * channel_pitch->norm_output() * (channel_pitch->get_reverse()?-1:1),
10000 * channel_throttle->norm_output() * (channel_throttle->get_reverse()?-1:1),
10000 * channel_rudder->norm_output() * (channel_rudder->get_reverse()?-1:1),
0,
0,
0,
0,
receiver_rssi);
}
void Plane::send_radio_out(mavlink_channel_t chan)
{
#if HIL_SUPPORT
if (g.hil_mode==1 && !g.hil_servos) {
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
RC_Channel::rc_channel(0)->get_radio_out(),
RC_Channel::rc_channel(1)->get_radio_out(),
RC_Channel::rc_channel(2)->get_radio_out(),
RC_Channel::rc_channel(3)->get_radio_out(),
RC_Channel::rc_channel(4)->get_radio_out(),
RC_Channel::rc_channel(5)->get_radio_out(),
RC_Channel::rc_channel(6)->get_radio_out(),
RC_Channel::rc_channel(7)->get_radio_out());
return;
}
#endif
mavlink_msg_servo_output_raw_send(
chan,
micros(),
0, // port
hal.rcout->read(0),
hal.rcout->read(1),
hal.rcout->read(2),
hal.rcout->read(3),
hal.rcout->read(4),
hal.rcout->read(5),
hal.rcout->read(6),
hal.rcout->read(7));
}
void Plane::send_vfr_hud(mavlink_channel_t chan)
{
float aspeed;
if (airspeed.enabled()) {
aspeed = airspeed.get_airspeed();
} else if (!ahrs.airspeed_estimate(&aspeed)) {
aspeed = 0;
}
mavlink_msg_vfr_hud_send(
chan,
aspeed,
gps.ground_speed(),
(ahrs.yaw_sensor / 100) % 360,
abs(throttle_percentage()),
current_loc.alt / 100.0f,
barometer.get_climb_rate());
}
/*
keep last HIL_STATE message to allow sending SIM_STATE
*/
#if HIL_SUPPORT
static mavlink_hil_state_t last_hil_state;
#endif
// report simulator state
void Plane::send_simstate(mavlink_channel_t chan)
{
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.simstate_send(chan);
#elif HIL_SUPPORT
if (g.hil_mode == 1) {
mavlink_msg_simstate_send(chan,
last_hil_state.roll,
last_hil_state.pitch,
last_hil_state.yaw,
last_hil_state.xacc*0.001f*GRAVITY_MSS,
last_hil_state.yacc*0.001f*GRAVITY_MSS,
last_hil_state.zacc*0.001f*GRAVITY_MSS,
last_hil_state.rollspeed,
last_hil_state.pitchspeed,
last_hil_state.yawspeed,
last_hil_state.lat,
last_hil_state.lon);
}
#endif
}
void Plane::send_hwstatus(mavlink_channel_t chan)
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
hal.i2c->lockup_count());
}
void Plane::send_wind(mavlink_channel_t chan)
{
Vector3f wind = ahrs.wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)), // use negative, to give
// direction wind is coming from
wind.length(),
wind.z);
}
/*
send RPM packet
*/
void NOINLINE Plane::send_rpm(mavlink_channel_t chan)
{
if (rpm_sensor.healthy(0) || rpm_sensor.healthy(1)) {
mavlink_msg_rpm_send(
chan,
rpm_sensor.get_rpm(0),
rpm_sensor.get_rpm(1));
}
}
/*
send PID tuning message
*/
void Plane::send_pid_tuning(mavlink_channel_t chan)
{
const Vector3f &gyro = ahrs.get_gyro();
const DataFlash_Class::PID_Info *pid_info;
if (g.gcs_pid_mask & 1) {
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
} else {
pid_info = &rollController.get_pid_info();
}
mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL,
pid_info->desired,
degrees(gyro.x),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 2) {
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
} else {
pid_info = &pitchController.get_pid_info();
}
mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH,
pid_info->desired,
degrees(gyro.y),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 4) {
if (quadplane.in_vtol_mode()) {
pid_info = &quadplane.attitude_control->get_rate_yaw_pid().get_pid_info();
} else {
pid_info = &yawController.get_pid_info();
}
mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW,
pid_info->desired,
degrees(gyro.z),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
if (g.gcs_pid_mask & 8) {
pid_info = &steerController.get_pid_info();
mavlink_msg_pid_tuning_send(chan, PID_TUNING_STEER,
pid_info->desired,
degrees(gyro.z),
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
}
}
void Plane::send_rangefinder(mavlink_channel_t chan)
{
#if RANGEFINDER_ENABLED == ENABLED
if (!rangefinder.has_data()) {
// no sonar to report
return;
}
mavlink_msg_rangefinder_send(
chan,
rangefinder.distance_cm() * 0.01f,
rangefinder.voltage_mv()*0.001f);
#endif
}
void Plane::send_current_waypoint(mavlink_channel_t chan)
{
mavlink_msg_mission_current_send(chan, mission.get_current_nav_index());
}
// are we still delaying telemetry to try to avoid Xbee bricking?
bool Plane::telemetry_delayed(mavlink_channel_t chan)
{
uint32_t tnow = millis() >> 10;
if (tnow > (uint32_t)g.telem_delay) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
// try to send a message, return false if it won't fit in the serial tx buffer
bool GCS_MAVLINK::try_send_message(enum ap_message id)
{
if (plane.telemetry_delayed(chan)) {
return false;
}
// if we don't have at least 0.2ms remaining before the main loop
// wants to fire then don't send a mavlink message. We want to
// prioritise the main flight control loop over communications
if (!plane.in_mavlink_delay && plane.scheduler.time_available_usec() < 200) {
plane.gcs_out_of_time = true;
return false;
}
switch (id) {
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
plane.send_heartbeat(chan);
return true;
case MSG_EXTENDED_STATUS1:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
plane.send_extended_status1(chan);
CHECK_PAYLOAD_SIZE2(POWER_STATUS);
send_power_status();
break;
case MSG_EXTENDED_STATUS2:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo();
break;
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
plane.send_attitude(chan);
break;
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
plane.send_location(chan);
break;
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position(plane.ahrs);
break;
case MSG_NAV_CONTROLLER_OUTPUT:
if (plane.control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
plane.send_nav_controller_output(chan);
}
break;
case MSG_POSITION_TARGET_GLOBAL_INT:
if (plane.control_mode != MANUAL) {
CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT);
plane.send_position_target_global_int(chan);
}
break;
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
send_gps_raw(plane.gps);
break;
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time(plane.gps);
break;
case MSG_SERVO_OUT:
#if HIL_SUPPORT
if (plane.g.hil_mode == 1) {
CHECK_PAYLOAD_SIZE(RC_CHANNELS_SCALED);
plane.send_servo_out(chan);
}
#endif
break;
case MSG_RADIO_IN:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_radio_in(plane.receiver_rssi);
break;
case MSG_RADIO_OUT:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
plane.send_radio_out(chan);
break;
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
plane.send_vfr_hud(chan);
break;
case MSG_RAW_IMU1:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu(plane.ins, plane.compass);
break;
case MSG_RAW_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure(plane.barometer);
break;
case MSG_RAW_IMU3:
CHECK_PAYLOAD_SIZE(SENSOR_OFFSETS);
send_sensor_offsets(plane.ins, plane.compass, plane.barometer);
break;
case MSG_CURRENT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
plane.send_current_waypoint(chan);
break;
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
queued_param_send();
break;
case MSG_NEXT_WAYPOINT:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
queued_waypoint_send();
break;
case MSG_STATUSTEXT:
// depreciated, use GCS_MAVLINK::send_statustext*
return false;
#if GEOFENCE_ENABLED == ENABLED
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
plane.send_fence_status(chan);
break;
#endif
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs(plane.ahrs);
break;
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
plane.send_simstate(chan);
CHECK_PAYLOAD_SIZE2(AHRS2);
send_ahrs2(plane.ahrs);
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
plane.send_hwstatus(chan);
break;
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
plane.send_rangefinder(chan);
break;
case MSG_TERRAIN:
#if AP_TERRAIN_AVAILABLE
CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST);
plane.terrain.send_request(chan);
#endif
break;
case MSG_CAMERA_FEEDBACK:
#if CAMERA == ENABLED
CHECK_PAYLOAD_SIZE(CAMERA_FEEDBACK);
plane.camera.send_feedback(chan, plane.gps, plane.ahrs, plane.current_loc);
#endif
break;
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2(plane.battery);
break;
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
plane.send_wind(chan);
break;
case MSG_MOUNT_STATUS:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(MOUNT_STATUS);
plane.camera_mount.status_msg(chan);
#endif // MOUNT == ENABLED
break;
case MSG_OPTICAL_FLOW:
#if OPTFLOW == ENABLED
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow(plane.ahrs, plane.optflow);
#endif
break;
case MSG_EKF_STATUS_REPORT:
#if AP_AHRS_NAVEKF_AVAILABLE
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
plane.ahrs.send_ekf_status_report(chan);
#endif
break;
case MSG_GIMBAL_REPORT:
#if MOUNT == ENABLED
CHECK_PAYLOAD_SIZE(GIMBAL_REPORT);
plane.camera_mount.send_gimbal_report(chan);
#endif
break;
case MSG_RETRY_DEFERRED:
break; // just here to prevent a warning
case MSG_LIMITS_STATUS:
// unused
break;
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
plane.send_pid_tuning(chan);
break;
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration(plane.ins);
break;
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
plane.send_rpm(chan);
break;
case MSG_MISSION_ITEM_REACHED:
CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED);
mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index);
break;
case MSG_MAG_CAL_PROGRESS:
CHECK_PAYLOAD_SIZE(MAG_CAL_PROGRESS);
plane.compass.send_mag_cal_progress(chan);
break;
case MSG_MAG_CAL_REPORT:
CHECK_PAYLOAD_SIZE(MAG_CAL_REPORT);
plane.compass.send_mag_cal_report(chan);
break;
}
return true;
}
/*
default stream rates to 1Hz
*/
const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Raw sensor stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 1),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Extended status stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 1),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: RC Channel stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 1),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Raw Control stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 1),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Position stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 1),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Extra data type 1 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 1),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Extra data type 2 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 1),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Extra data type 3 stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 1),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Parameter stream rate to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 10),
AP_GROUPEND
};
float GCS_MAVLINK::adjust_rate_for_stream_trigger(enum streams stream_num)
{
// send at a much lower rate while handling waypoints and
// parameter sends
if ((stream_num != STREAM_PARAMS) &&
(waypoint_receiving || _queued_parameter != NULL)) {
return 0.25f;
}
return 1.0f;
}
void
GCS_MAVLINK::data_stream_send(void)
{
plane.gcs_out_of_time = false;
if (!plane.in_mavlink_delay) {
handle_log_send(plane.DataFlash);
}
if (_queued_parameter != NULL) {
if (streamRates[STREAM_PARAMS].get() <= 0) {
streamRates[STREAM_PARAMS].set(10);
}
if (stream_trigger(STREAM_PARAMS)) {
send_message(MSG_NEXT_PARAM);
}
}
if (plane.gcs_out_of_time) return;
if (plane.in_mavlink_delay) {
#if HIL_SUPPORT
if (plane.g.hil_mode == 1) {
// in HIL we need to keep sending servo values to ensure
// the simulator doesn't pause, otherwise our sensor
// calibration could stall
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
}
}
#endif
// don't send any other stream types while in the delay callback
return;
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_SENSORS)) {
send_message(MSG_RAW_IMU1);
send_message(MSG_RAW_IMU2);
send_message(MSG_RAW_IMU3);
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTENDED_STATUS)) {
send_message(MSG_EXTENDED_STATUS1);
send_message(MSG_EXTENDED_STATUS2);
send_message(MSG_CURRENT_WAYPOINT);
send_message(MSG_GPS_RAW);
send_message(MSG_NAV_CONTROLLER_OUTPUT);
send_message(MSG_FENCE_STATUS);
send_message(MSG_POSITION_TARGET_GLOBAL_INT);
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_POSITION)) {
// sent with GPS read
send_message(MSG_LOCATION);
send_message(MSG_LOCAL_POSITION);
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_RAW_CONTROLLER)) {
send_message(MSG_SERVO_OUT);
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_RC_CHANNELS)) {
send_message(MSG_RADIO_OUT);
send_message(MSG_RADIO_IN);
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA1)) {
send_message(MSG_ATTITUDE);
send_message(MSG_SIMSTATE);
send_message(MSG_RPM);
if (plane.control_mode != MANUAL) {
send_message(MSG_PID_TUNING);
}
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA2)) {
send_message(MSG_VFR_HUD);
}
if (plane.gcs_out_of_time) return;
if (stream_trigger(STREAM_EXTRA3)) {
send_message(MSG_AHRS);
send_message(MSG_HWSTATUS);
send_message(MSG_WIND);
send_message(MSG_RANGEFINDER);
send_message(MSG_SYSTEM_TIME);
#if AP_TERRAIN_AVAILABLE
send_message(MSG_TERRAIN);
#endif
send_message(MSG_MAG_CAL_REPORT);
send_message(MSG_MAG_CAL_PROGRESS);
send_message(MSG_BATTERY2);
send_message(MSG_MOUNT_STATUS);
send_message(MSG_OPTICAL_FLOW);
send_message(MSG_EKF_STATUS_REPORT);
send_message(MSG_GIMBAL_REPORT);
send_message(MSG_VIBRATION);
}
}
/*
handle a request to switch to guided mode. This happens via a
callback from handle_mission_item()
*/
bool GCS_MAVLINK::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
if (plane.control_mode != GUIDED) {
// only accept position updates when in GUIDED mode
return false;
}
plane.guided_WP_loc = cmd.content.location;
// add home alt if needed
if (plane.guided_WP_loc.flags.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.flags.relative_alt = 0;
}
plane.set_guided_WP();
return true;
}
/*
handle a request to change current WP altitude. This happens via a
callback from handle_mission_item()
*/
void GCS_MAVLINK::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
plane.next_WP_loc.alt = cmd.content.location.alt;
if (cmd.content.location.flags.relative_alt) {
plane.next_WP_loc.alt += plane.home.alt;
}
plane.next_WP_loc.flags.relative_alt = false;
plane.next_WP_loc.flags.terrain_alt = cmd.content.location.flags.terrain_alt;
plane.reset_offset_altitude();
}
void GCS_MAVLINK::handleMessage(mavlink_message_t* msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
{
handle_request_data_stream(msg, true);
break;
}
case MAVLINK_MSG_ID_COMMAND_INT:
{
// decode
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
switch(packet.command) {
case MAV_CMD_DO_REPOSITION:
Location requested_position {};
requested_position.lat = packet.x;
requested_position.lng = packet.y;
// check the floating representation for overflow of altitude
if (abs(packet.z * 100.0f) >= 0x7fffff) {
result = MAV_RESULT_FAILED;
break;
}
requested_position.alt = (int32_t)(packet.z * 100.0f);
// load option flags
if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) {
requested_position.flags.relative_alt = 1;
}
else if (packet.frame == MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) {
requested_position.flags.terrain_alt = 1;
}
else if (packet.frame != MAV_FRAME_GLOBAL_INT) {
// not a supported frame
break;
}
if (is_zero(packet.param4)) {
requested_position.flags.loiter_ccw = 0;
} else {
requested_position.flags.loiter_ccw = 1;
}
if (location_sanitize(plane.current_loc, requested_position)) {
// if the location wasn't already sane don't load it
result = MAV_RESULT_FAILED; // failed as the location is not valid
break;
}
// location is valid load and set
if (((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) ||
(plane.control_mode == GUIDED)) {
plane.set_mode(GUIDED);
plane.guided_WP_loc = requested_position;
// add home alt if needed
if (plane.guided_WP_loc.flags.relative_alt) {
plane.guided_WP_loc.alt += plane.home.alt;
plane.guided_WP_loc.flags.relative_alt = 0;
}
plane.set_guided_WP();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED; // failed as we are not in guided
}
break;
}
mavlink_msg_command_ack_send_buf(
msg,
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_COMMAND_LONG:
{
// decode
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(msg, &packet);
uint8_t result = MAV_RESULT_UNSUPPORTED;
// do command
switch(packet.command) {
case MAV_CMD_DO_CHANGE_SPEED:
result = MAV_RESULT_FAILED;
AP_Mission::Mission_Command cmd;
if (AP_Mission::mavlink_cmd_long_to_mission_cmd(packet, cmd)
== MAV_MISSION_ACCEPTED) {
plane.do_change_speed(cmd);
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_START_RX_PAIR:
// initiate bind procedure
if (!hal.rcin->rc_bind(packet.param1)) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_NAV_LOITER_UNLIM:
plane.set_mode(LOITER);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
plane.set_mode(RTL);
result = MAV_RESULT_ACCEPTED;
break;
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for the camera
case MAV_CMD_DO_SET_ROI:
// sanity check location
if (fabsf(packet.param5) > 90.0f || fabsf(packet.param6) > 180.0f) {
break;
}
Location roi_loc;
roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
roi_loc.alt = (int32_t)(packet.param7 * 100.0f);
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
// switch off the camera tracking if enabled
if (plane.camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
plane.camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
plane.camera_mount.set_roi_target(roi_loc);
}
result = MAV_RESULT_ACCEPTED;
break;
#endif
#if CAMERA == ENABLED
case MAV_CMD_DO_DIGICAM_CONFIGURE:
plane.camera.configure(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6,
packet.param7);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_DO_DIGICAM_CONTROL:
if (plane.camera.control(packet.param1,
packet.param2,
packet.param3,
packet.param4,
packet.param5,
packet.param6)) {
plane.log_picture();
}
result = MAV_RESULT_ACCEPTED;
break;
#endif // CAMERA == ENABLED
case MAV_CMD_DO_MOUNT_CONTROL:
#if MOUNT == ENABLED
plane.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
result = MAV_RESULT_ACCEPTED;
#endif
break;
case MAV_CMD_MISSION_START:
plane.set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_CMD_PREFLIGHT_CALIBRATION:
plane.in_calibration = true;
if (is_equal(packet.param1,1.0f)) {
/*
gyro calibration
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
plane.ins.init_gyro();
if (plane.ins.gyro_calibrated_ok_all()) {
plane.ahrs.reset_gyro_drift();
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_equal(packet.param3,1.0f)) {
/*
baro and airspeed calibration
*/
if (hal.util->get_soft_armed() && plane.is_flying()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while flying");
result = MAV_RESULT_FAILED;
break;
}
plane.init_barometer(false);
if (plane.airspeed.enabled()) {
plane.zero_airspeed(false);
}
result = MAV_RESULT_ACCEPTED;
} else if (is_equal(packet.param4,1.0f)) {
/*
radio trim
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
plane.trim_radio();
result = MAV_RESULT_ACCEPTED;
} else if (is_equal(packet.param5,1.0f)) {
/*
accel calibration
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
result = MAV_RESULT_ACCEPTED;
// start with gyro calibration
plane.ins.init_gyro();
// reset ahrs gyro bias
if (plane.ins.gyro_calibrated_ok_all()) {
plane.ahrs.reset_gyro_drift();
} else {
result = MAV_RESULT_FAILED;
}
plane.ins.acal_init();
plane.ins.get_acal()->start(this);
} else if (is_equal(packet.param5,2.0f)) {
/*
ahrs trim
*/
if (hal.util->get_soft_armed()) {
send_text(MAV_SEVERITY_WARNING, "No calibration while armed");
result = MAV_RESULT_FAILED;
break;
}
// start with gyro calibration
plane.ins.init_gyro();
// accel trim
float trim_roll, trim_pitch;
if(plane.ins.calibrate_trim(trim_roll, trim_pitch)) {
// reset ahrs's trim to suggested values from calibration routine
plane.ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
}
else {
send_text(MAV_SEVERITY_WARNING, "Unsupported preflight calibration");
}
plane.in_calibration = false;
break;
case MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS:
{
uint8_t compassNumber = -1;
if (is_equal(packet.param1, 2.0f)) {
compassNumber = 0;
} else if (is_equal(packet.param1, 5.0f)) {
compassNumber = 1;
} else if (is_equal(packet.param1, 6.0f)) {
compassNumber = 2;
}
if (compassNumber != (uint8_t) -1) {
plane.compass.set_and_save_offsets(compassNumber, packet.param2, packet.param3, packet.param4);
result = MAV_RESULT_ACCEPTED;
}
break;
}
case MAV_CMD_COMPONENT_ARM_DISARM:
if (is_equal(packet.param1,1.0f)) {
// run pre_arm_checks and arm_checks and display failures
if (plane.arm_motors(AP_Arming::MAVLINK)) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else if (is_zero(packet.param1)) {
if (plane.disarm_motors()) {
result = MAV_RESULT_ACCEPTED;
} else {
result = MAV_RESULT_FAILED;
}
} else {
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_GET_HOME_POSITION:
if (plane.home_is_set != HOME_UNSET) {
send_home(plane.ahrs.get_home());
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_MODE:
switch ((uint16_t)packet.param1) {
case MAV_MODE_MANUAL_ARMED:
case MAV_MODE_MANUAL_DISARMED:
plane.set_mode(MANUAL);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_AUTO_ARMED:
case MAV_MODE_AUTO_DISARMED:
plane.set_mode(AUTO);
result = MAV_RESULT_ACCEPTED;
break;
case MAV_MODE_STABILIZE_DISARMED:
case MAV_MODE_STABILIZE_ARMED:
plane.set_mode(FLY_BY_WIRE_A);
result = MAV_RESULT_ACCEPTED;
break;
default:
result = MAV_RESULT_UNSUPPORTED;
}
break;
case MAV_CMD_DO_SET_SERVO:
if (plane.ServoRelayEvents.do_set_servo(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_SERVO:
if (plane.ServoRelayEvents.do_repeat_servo(packet.param1, packet.param2, packet.param3, packet.param4*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_RELAY:
if (plane.ServoRelayEvents.do_set_relay(packet.param1, packet.param2)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_REPEAT_RELAY:
if (plane.ServoRelayEvents.do_repeat_relay(packet.param1, packet.param2, packet.param3*1000)) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) {
// when packet.param1 == 3 we reboot to hold in bootloader
hal.scheduler->reboot(is_equal(packet.param1,3.0f));
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_LAND_START:
result = MAV_RESULT_FAILED;
// attempt to switch to next DO_LAND_START command in the mission
if (plane.jump_to_landing_sequence()) {
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_GO_AROUND:
result = MAV_RESULT_FAILED;
//Not allowing go around at FLIGHT_LAND_FINAL stage on purpose --
//if plane is close to the ground a go around coudld be dangerous.
if (plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH ||
plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE ||
plane.flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) {
// Initiate an aborted landing. This will trigger a pitch-up and
// climb-out to a safe altitude holding heading then one of the
// following actions will occur, check for in this order:
// - If MAV_CMD_CONTINUE_AND_CHANGE_ALT is next command in mission,
// increment mission index to execute it
// - else if DO_LAND_START is available, jump to it
// - else decrement the mission index to repeat the landing approach
if (!is_zero(packet.param1)) {
plane.auto_state.takeoff_altitude_rel_cm = packet.param1 * 100;
}
plane.auto_state.commanded_go_around = true;
result = MAV_RESULT_ACCEPTED;
plane.gcs_send_text(MAV_SEVERITY_INFO,"Go around command accepted");
} else {
plane.gcs_send_text(MAV_SEVERITY_NOTICE,"Rejected go around command");
}
break;
case MAV_CMD_DO_FENCE_ENABLE:
result = MAV_RESULT_ACCEPTED;
if (!plane.geofence_present()) {
result = MAV_RESULT_FAILED;
} switch((uint16_t)packet.param1) {
case 0:
if (! plane.geofence_set_enabled(false, GCS_TOGGLED)) {
result = MAV_RESULT_FAILED;
}
break;
case 1:
if (! plane.geofence_set_enabled(true, GCS_TOGGLED)) {
result = MAV_RESULT_FAILED;
}
break;
case 2: //disable fence floor only
if (! plane.geofence_set_floor_enabled(false)) {
result = MAV_RESULT_FAILED;
} else {
plane.gcs_send_text(MAV_SEVERITY_NOTICE,"Fence floor disabled");
}
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES: {
if (is_equal(packet.param1,1.0f)) {
send_autopilot_version(FIRMWARE_VERSION);
result = MAV_RESULT_ACCEPTED;
}
break;
case MAV_CMD_DO_SET_HOME:
// param1 : use current (1=use current location, 0=use specified location)
// param5 : latitude
// param6 : longitude
// param7 : altitude (absolute)
result = MAV_RESULT_FAILED; // assume failure
if (is_equal(packet.param1,1.0f)) {
plane.init_home();
} else {
if (is_zero(packet.param5) && is_zero(packet.param6) && is_zero(packet.param7)) {
// don't allow the 0,0 position
break;
}
// sanity check location
if (fabsf(packet.param5) > 90.0f || fabsf(packet.param6) > 180.0f) {
break;
}
Location new_home_loc {};
new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f);
new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f);
new_home_loc.alt = (int32_t)(packet.param7 * 100.0f);
plane.ahrs.set_home(new_home_loc);
plane.home_is_set = HOME_SET_NOT_LOCKED;
plane.Log_Write_Home_And_Origin();
GCS_MAVLINK::send_home_all(new_home_loc);
result = MAV_RESULT_ACCEPTED;
plane.gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um",
(double)(new_home_loc.lat*1.0e-7f),
(double)(new_home_loc.lng*1.0e-7f),
(uint32_t)(new_home_loc.alt*0.01f));
}
break;
}
case MAV_CMD_DO_AUTOTUNE_ENABLE:
// param1 : enable/disable
plane.autotune_enable(!is_zero(packet.param1));
break;
case MAV_CMD_DO_START_MAG_CAL:
case MAV_CMD_DO_ACCEPT_MAG_CAL:
case MAV_CMD_DO_CANCEL_MAG_CAL:
result = plane.compass.handle_mag_cal_command(packet);
break;
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE:
// configure or release parachute
result = MAV_RESULT_ACCEPTED;
switch ((uint16_t)packet.param1) {
case PARACHUTE_DISABLE:
plane.parachute.enabled(false);
break;
case PARACHUTE_ENABLE:
plane.parachute.enabled(true);
break;
case PARACHUTE_RELEASE:
// treat as a manual release which performs some additional check of altitude
if (plane.parachute.released()) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Parachute already released");
result = MAV_RESULT_FAILED;
} else if (!plane.parachute.enabled()) {
plane.gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Parachute not enabled");
result = MAV_RESULT_FAILED;
} else {
if (!plane.parachute_manual_release()) {
result = MAV_RESULT_FAILED;
}
}
break;
default:
result = MAV_RESULT_FAILED;
break;
}
break;
#endif
case MAV_CMD_DO_MOTOR_TEST:
// param1 : motor sequence number (a number from 1 to max number of motors on the vehicle)
// param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum)
// param3 : throttle (range depends upon param2)
// param4 : timeout (in seconds)
// param5 : motor count (number of motors to test in sequence)
result = plane.quadplane.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4, (uint8_t)packet.param5);
break;
case MAV_CMD_DO_VTOL_TRANSITION:
if (!plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)packet.param1)) {
result = MAV_RESULT_FAILED;
} else {
result = MAV_RESULT_ACCEPTED;
}
break;
default:
break;
}
mavlink_msg_command_ack_send_buf(
msg,
chan,
packet.command,
result);
break;
}
case MAVLINK_MSG_ID_SET_MODE:
{
handle_set_mode(msg, FUNCTOR_BIND(&plane, &Plane::mavlink_set_mode, bool, uint8_t));
break;
}
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
{
handle_mission_request_list(plane.mission, msg);
break;
}
// XXX read a WP from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST:
{
handle_mission_request(plane.mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
{
// nothing to do
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
{
// mark the firmware version in the tlog
send_text(MAV_SEVERITY_INFO, FIRMWARE_STRING);
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION)
send_text(MAV_SEVERITY_INFO, "PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION);
#endif
handle_param_request_list(msg);
break;
}
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
{
handle_param_request_read(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
{
handle_mission_clear_all(plane.mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
{
// disable cross-track when user asks for WP change, to
// prevent unexpected flight paths
plane.auto_state.next_wp_no_crosstrack = true;
handle_mission_set_current(plane.mission, msg);
if (plane.control_mode == AUTO && plane.mission.state() == AP_Mission::MISSION_STOPPED) {
plane.mission.resume();
}
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT:
{
handle_mission_count(plane.mission, msg);
break;
}
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
{
handle_mission_write_partial_list(plane.mission, msg);
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM:
{
if (handle_mission_item(msg, plane.mission)) {
plane.DataFlash.Log_Write_EntireMission(plane.mission);
}
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
{
if (handle_mission_item(msg, plane.mission)) {
plane.DataFlash.Log_Write_EntireMission(plane.mission);
}
break;
}
#if GEOFENCE_ENABLED == ENABLED
// receive a fence point from GCS and store in EEPROM
case MAVLINK_MSG_ID_FENCE_POINT: {
mavlink_fence_point_t packet;
mavlink_msg_fence_point_decode(msg, &packet);
if (plane.g.fence_action != FENCE_ACTION_NONE) {
send_text(MAV_SEVERITY_WARNING,"Fencing must be disabled");
} else if (packet.count != plane.g.fence_total) {
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
} else if (fabsf(packet.lat) > 90.0f || fabsf(packet.lng) > 180.0f) {
send_text(MAV_SEVERITY_WARNING,"Invalid fence point, lat or lng too large");
} else {
Vector2l point;
point.x = packet.lat*1.0e7f;
point.y = packet.lng*1.0e7f;
plane.set_fence_point_with_index(point, packet.idx);
}
break;
}
// send a fence point to GCS
case MAVLINK_MSG_ID_FENCE_FETCH_POINT: {
mavlink_fence_fetch_point_t packet;
mavlink_msg_fence_fetch_point_decode(msg, &packet);
if (packet.idx >= plane.g.fence_total) {
send_text(MAV_SEVERITY_WARNING,"Bad fence point");
} else {
Vector2l point = plane.get_fence_point_with_index(packet.idx);
mavlink_msg_fence_point_send_buf(msg, chan, msg->sysid, msg->compid, packet.idx, plane.g.fence_total,
point.x*1.0e-7f, point.y*1.0e-7f);
}
break;
}
#endif // GEOFENCE_ENABLED
// receive a rally point from GCS and store in EEPROM
case MAVLINK_MSG_ID_RALLY_POINT: {
mavlink_rally_point_t packet;
mavlink_msg_rally_point_decode(msg, &packet);
if (packet.idx >= plane.rally.get_rally_total() ||
packet.idx >= plane.rally.get_rally_max()) {
send_text(MAV_SEVERITY_WARNING,"Bad rally point message ID");
break;
}
if (packet.count != plane.rally.get_rally_total()) {
send_text(MAV_SEVERITY_WARNING,"Bad rally point message count");
break;
}
RallyLocation rally_point;
rally_point.lat = packet.lat;
rally_point.lng = packet.lng;
rally_point.alt = packet.alt;
rally_point.break_alt = packet.break_alt;
rally_point.land_dir = packet.land_dir;
rally_point.flags = packet.flags;
plane.rally.set_rally_point_with_index(packet.idx, rally_point);
break;
}
//send a rally point to the GCS
case MAVLINK_MSG_ID_RALLY_FETCH_POINT: {
mavlink_rally_fetch_point_t packet;
mavlink_msg_rally_fetch_point_decode(msg, &packet);
if (packet.idx > plane.rally.get_rally_total()) {
send_text(MAV_SEVERITY_WARNING, "Bad rally point index");
break;
}
RallyLocation rally_point;
if (!plane.rally.get_rally_point_with_index(packet.idx, rally_point)) {
send_text(MAV_SEVERITY_WARNING, "Failed to set rally point");
break;
}
mavlink_msg_rally_point_send_buf(msg,
chan, msg->sysid, msg->compid, packet.idx,
plane.rally.get_rally_total(), rally_point.lat, rally_point.lng,
rally_point.alt, rally_point.break_alt, rally_point.land_dir,
rally_point.flags);
break;
}
case MAVLINK_MSG_ID_PARAM_SET:
{
handle_param_set(msg, &plane.DataFlash);
break;
}
case MAVLINK_MSG_ID_GIMBAL_REPORT:
{
#if MOUNT == ENABLED
handle_gimbal_report(plane.camera_mount, msg);
#endif
break;
}
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
{
// allow override of RC channel values for HIL
// or for complete GCS control of switch position
// and RC PWM values.
if(msg->sysid != plane.g.sysid_my_gcs) break; // Only accept control from our gcs
mavlink_rc_channels_override_t packet;
int16_t v[8];
mavlink_msg_rc_channels_override_decode(msg, &packet);
v[0] = packet.chan1_raw;
v[1] = packet.chan2_raw;
v[2] = packet.chan3_raw;
v[3] = packet.chan4_raw;
v[4] = packet.chan5_raw;
v[5] = packet.chan6_raw;
v[6] = packet.chan7_raw;
v[7] = packet.chan8_raw;
if (hal.rcin->set_overrides(v, 8)) {
plane.failsafe.last_valid_rc_ms = AP_HAL::millis();
plane.failsafe.AFS_last_valid_rc_ms = plane.failsafe.last_valid_rc_ms;
}
// a RC override message is consiered to be a 'heartbeat' from
// the ground station for failsafe purposes
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_HEARTBEAT:
{
// We keep track of the last time we received a heartbeat from
// our GCS for failsafe purposes
if (msg->sysid != plane.g.sysid_my_gcs) break;
plane.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
case MAVLINK_MSG_ID_HIL_STATE:
{
#if HIL_SUPPORT
if (plane.g.hil_mode != 1) {
break;
}
mavlink_hil_state_t packet;
mavlink_msg_hil_state_decode(msg, &packet);
last_hil_state = packet;
// set gps hil sensor
Location loc;
memset(&loc, 0, sizeof(loc));
loc.lat = packet.lat;
loc.lng = packet.lon;
loc.alt = packet.alt/10;
Vector3f vel(packet.vx, packet.vy, packet.vz);
vel *= 0.01f;
// setup airspeed pressure based on 3D speed, no wind
plane.airspeed.setHIL(sq(vel.length()) / 2.0f + 2013);
plane.gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D,
packet.time_usec/1000,
loc, vel, 10, 0);
// rad/sec
Vector3f gyros;
gyros.x = packet.rollspeed;
gyros.y = packet.pitchspeed;
gyros.z = packet.yawspeed;
// m/s/s
Vector3f accels;
accels.x = packet.xacc * GRAVITY_MSS*0.001f;
accels.y = packet.yacc * GRAVITY_MSS*0.001f;
accels.z = packet.zacc * GRAVITY_MSS*0.001f;
plane.ins.set_gyro(0, gyros);
plane.ins.set_accel(0, accels);
plane.barometer.setHIL(packet.alt*0.001f);
plane.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw);
plane.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw);
// cope with DCM getting badly off due to HIL lag
if (plane.g.hil_err_limit > 0 &&
(fabsf(packet.roll - plane.ahrs.roll) > ToRad(plane.g.hil_err_limit) ||
fabsf(packet.pitch - plane.ahrs.pitch) > ToRad(plane.g.hil_err_limit) ||
wrap_PI(fabsf(packet.yaw - plane.ahrs.yaw)) > ToRad(plane.g.hil_err_limit))) {
plane.ahrs.reset_attitude(packet.roll, packet.pitch, packet.yaw);
}
#endif
break;
}
#if CAMERA == ENABLED
//deprecated. Use MAV_CMD_DO_DIGICAM_CONFIGURE
case MAVLINK_MSG_ID_DIGICAM_CONFIGURE:
{
break;
}
//deprecated. Use MAV_CMD_DO_DIGICAM_CONTROL
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
{
plane.camera.control_msg(msg);
plane.log_picture();
break;
}
#endif // CAMERA == ENABLED
#if MOUNT == ENABLED
//deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
{
plane.camera_mount.configure_msg(msg);
break;
}
//deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
case MAVLINK_MSG_ID_MOUNT_CONTROL:
{
plane.camera_mount.control_msg(msg);
break;
}
#endif // MOUNT == ENABLED
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
{
handle_radio_status(msg, plane.DataFlash, plane.should_log(MASK_LOG_PM));
break;
}
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
plane.in_log_download = true;
/* no break */
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
if (!plane.in_mavlink_delay) {
handle_log_message(msg, plane.DataFlash);
}
break;
case MAVLINK_MSG_ID_LOG_REQUEST_END:
plane.in_log_download = false;
if (!plane.in_mavlink_delay) {
handle_log_message(msg, plane.DataFlash);
}
break;
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg, plane.gps);
break;
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
handle_gps_inject(msg, plane.gps);
break;
#if RANGEFINDER_ENABLED == ENABLED
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
plane.rangefinder.handle_msg(msg);
break;
#endif
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
#if AP_TERRAIN_AVAILABLE
plane.terrain.handle_data(chan, msg);
#endif
break;
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
send_autopilot_version(FIRMWARE_VERSION);
break;
case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS:
plane.DataFlash.remote_log_block_status_msg(chan, msg);
break;
case MAVLINK_MSG_ID_SET_HOME_POSITION:
{
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(msg, &packet);
if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
// don't allow the 0,0 position
break;
}
// sanity check location
if (labs(packet.latitude) > 90*10e7 || labs(packet.longitude) > 180 * 10e7) {
break;
}
Location new_home_loc {};
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
plane.ahrs.set_home(new_home_loc);
plane.home_is_set = HOME_SET_NOT_LOCKED;
plane.Log_Write_Home_And_Origin();
GCS_MAVLINK::send_home_all(new_home_loc);
plane.gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set HOME to %.6f %.6f at %um",
(double)(new_home_loc.lat*1.0e-7f),
(double)(new_home_loc.lng*1.0e-7f),
(uint32_t)(new_home_loc.alt*0.01f));
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
plane.adsb.update_vehicle(msg);
break;
case MAVLINK_MSG_ID_SETUP_SIGNING:
handle_setup_signing(msg);
break;
} // end switch
} // end handle mavlink
/*
* a delay() callback that processes MAVLink packets. We set this as the
* callback in long running library initialisation routines to allow
* MAVLink to process packets while waiting for the initialisation to
* complete
*/
void Plane::mavlink_delay_cb()
{
static uint32_t last_1hz, last_50hz, last_5s;
if (!gcs[0].initialised || in_mavlink_delay) return;
in_mavlink_delay = true;
uint32_t tnow = millis();
if (tnow - last_1hz > 1000) {
last_1hz = tnow;
gcs_send_message(MSG_HEARTBEAT);
gcs_send_message(MSG_EXTENDED_STATUS1);
}
if (tnow - last_50hz > 20) {
last_50hz = tnow;
gcs_update();
gcs_data_stream_send();
notify.update();
}
if (tnow - last_5s > 5000) {
last_5s = tnow;
gcs_send_text(MAV_SEVERITY_INFO, "Initialising APM");
}
check_usb_mux();
in_mavlink_delay = false;
}
/*
* send a message on both GCS links
*/
void Plane::gcs_send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].send_message(id);
}
}
}
/*
* send a mission item reached message and load the index before the send attempt in case it may get delayed
*/
void Plane::gcs_send_mission_item_reached_message(uint16_t mission_index)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].mission_item_reached_index = mission_index;
gcs[i].send_message(MSG_MISSION_ITEM_REACHED);
}
}
}
/*
* send data streams in the given rate range on both links
*/
void Plane::gcs_data_stream_send(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
gcs[i].data_stream_send();
}
}
}
/*
* look for incoming commands on the GCS links
*/
void Plane::gcs_update(void)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
#if CLI_ENABLED == ENABLED
gcs[i].update(g.cli_enabled == 1 ? FUNCTOR_BIND_MEMBER(&Plane::run_cli, void, AP_HAL::UARTDriver *):NULL);
#else
gcs[i].update(NULL);
#endif
}
}
}
void Plane::gcs_send_text(MAV_SEVERITY severity, const char *str)
{
GCS_MAVLINK::send_statustext(severity, 0xFF, str);
}
/*
* send a low priority formatted message to the GCS
* only one fits in the queue, so if you send more than one before the
* last one gets into the serial buffer then the old one will be lost
*/
void Plane::gcs_send_text_fmt(MAV_SEVERITY severity, const char *fmt, ...)
{
char str[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN] {};
va_list arg_list;
va_start(arg_list, fmt);
hal.util->vsnprintf((char *)str, sizeof(str), fmt, arg_list);
va_end(arg_list);
GCS_MAVLINK::send_statustext(severity, 0xFF, str);
}
/*
send airspeed calibration data
*/
void Plane::gcs_send_airspeed_calibration(const Vector3f &vg)
{
for (uint8_t i=0; i<num_gcs; i++) {
if (gcs[i].initialised) {
if (HAVE_PAYLOAD_SPACE((mavlink_channel_t)i, AIRSPEED_AUTOCAL)) {
airspeed.log_mavlink_send((mavlink_channel_t)i, vg);
}
}
}
}
/**
retry any deferred messages
*/
void Plane::gcs_retry_deferred(void)
{
gcs_send_message(MSG_RETRY_DEFERRED);
GCS_MAVLINK::service_statustext();
}