mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
80e1c0ebb0
complete re-write of DSM decoding
306 lines
9.2 KiB
C++
306 lines
9.2 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Code by Andrew Tridgell and Siddharth Bharat Purohit
|
|
*/
|
|
/*
|
|
* See https://www.spektrumrc.com/ProdInfo/Files/Remote%20Receiver%20Interfacing%20Rev%20A.pdf for official
|
|
* Spektrum documentation on the format.
|
|
*/
|
|
#include "AP_RCProtocol_DSM.h"
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// #define DSM_DEBUG
|
|
#ifdef DSM_DEBUG
|
|
# define debug(fmt, args...) printf(fmt "\n", ##args)
|
|
#else
|
|
# define debug(fmt, args...) do {} while(0)
|
|
#endif
|
|
|
|
|
|
#define DSM_FRAME_SIZE 16 /**<DSM frame size in bytes*/
|
|
#define DSM_FRAME_CHANNELS 7 /**<Max supported DSM channels*/
|
|
#define DSM2_1024_22MS 0x01
|
|
#define DSM2_2048_11MS 0x12
|
|
#define DSMX_2048_22MS 0xa2
|
|
#define DSMX_2048_11MS 0xb2
|
|
#define SPEKTRUM_VTX_CONTROL_FRAME_MASK 0xf000f000
|
|
#define SPEKTRUM_VTX_CONTROL_FRAME 0xe000e000
|
|
|
|
void AP_RCProtocol_DSM::process_pulse(uint32_t width_s0, uint32_t width_s1)
|
|
{
|
|
uint8_t b;
|
|
if (ss.process_pulse(width_s0, width_s1, b)) {
|
|
_process_byte(ss.get_byte_timestamp_us(), b);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode the entire dsm frame (all contained channels)
|
|
*
|
|
*/
|
|
bool AP_RCProtocol_DSM::dsm_decode(uint32_t frame_time_us, const uint8_t dsm_frame[16],
|
|
uint16_t *values, uint16_t *num_values, uint16_t max_values)
|
|
{
|
|
/* we have received something we think is a dsm_frame */
|
|
last_frame_time_us = frame_time_us;
|
|
// Get the VTX control bytes in a frame
|
|
uint32_t vtxControl = ((dsm_frame[AP_DSM_FRAME_SIZE-4] << 24)
|
|
| (dsm_frame[AP_DSM_FRAME_SIZE-3] << 16)
|
|
| (dsm_frame[AP_DSM_FRAME_SIZE-2] << 8)
|
|
| (dsm_frame[AP_DSM_FRAME_SIZE-1] << 0));
|
|
|
|
uint8_t dsm_frame_data_size;
|
|
// Handle VTX control frame.
|
|
if ((vtxControl & SPEKTRUM_VTX_CONTROL_FRAME_MASK) == SPEKTRUM_VTX_CONTROL_FRAME
|
|
&& (dsm_frame[2] & 0x80) == 0) {
|
|
dsm_frame_data_size = AP_DSM_FRAME_SIZE - 4;
|
|
// someday do something with the data
|
|
} else {
|
|
dsm_frame_data_size = AP_DSM_FRAME_SIZE;
|
|
}
|
|
|
|
// Get the RC control channel inputs
|
|
for (uint8_t b = 3; b < dsm_frame_data_size; b += 2) {
|
|
uint8_t channel = 0x0F & (dsm_frame[b - 1] >> channel_shift);
|
|
|
|
uint32_t value = ((uint32_t)(dsm_frame[b - 1] & channel_mask) << 8) + dsm_frame[b];
|
|
|
|
/* ignore channels out of range */
|
|
if (channel >= max_values) {
|
|
continue;
|
|
}
|
|
|
|
/* update the decoded channel count */
|
|
if (channel >= *num_values) {
|
|
*num_values = channel + 1;
|
|
}
|
|
|
|
/* convert 0-1024 / 0-2048 values to 1000-2000 ppm encoding. */
|
|
if (channel_shift == 2) {
|
|
value *= 2;
|
|
}
|
|
|
|
/* Spektrum scaling is defined as (see reference):
|
|
2048: PWM_OUT = (ServoPosition x 58.3μs) + 903
|
|
1024: PWM_OUT = (ServoPosition x 116.6μs) + 903 */
|
|
/* scaled integer for decent accuracy while staying efficient */
|
|
value = ((int32_t)value * 1194) / 2048 + 903;
|
|
|
|
/*
|
|
* Store the decoded channel into the R/C input buffer, taking into
|
|
* account the different ideas about channel assignement that we have.
|
|
*
|
|
* Specifically, the first four channels in rc_channel_data are roll, pitch, thrust, yaw,
|
|
* but the first four channels from the DSM receiver are thrust, roll, pitch, yaw.
|
|
*/
|
|
switch (channel) {
|
|
case 0:
|
|
channel = 2;
|
|
break;
|
|
|
|
case 1:
|
|
channel = 0;
|
|
break;
|
|
|
|
case 2:
|
|
channel = 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
values[channel] = value;
|
|
}
|
|
|
|
/*
|
|
* XXX Note that we may be in failsafe here; we need to work out how to detect that.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
start bind on DSM satellites
|
|
*/
|
|
void AP_RCProtocol_DSM::start_bind(void)
|
|
{
|
|
bind_state = BIND_STATE1;
|
|
}
|
|
|
|
|
|
/*
|
|
update function used for bind state machine
|
|
*/
|
|
void AP_RCProtocol_DSM::update(void)
|
|
{
|
|
#if defined(HAL_GPIO_SPEKTRUM_PWR) && defined(HAL_GPIO_SPEKTRUM_RC)
|
|
switch (bind_state) {
|
|
case BIND_STATE_NONE:
|
|
break;
|
|
|
|
case BIND_STATE1:
|
|
hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, !HAL_SPEKTRUM_PWR_ENABLED);
|
|
hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 1);
|
|
hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1);
|
|
bind_last_ms = AP_HAL::millis();
|
|
bind_state = BIND_STATE2;
|
|
break;
|
|
|
|
case BIND_STATE2: {
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - bind_last_ms > 500) {
|
|
hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, HAL_SPEKTRUM_PWR_ENABLED);
|
|
bind_last_ms = now;
|
|
bind_state = BIND_STATE3;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BIND_STATE3: {
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - bind_last_ms > 72) {
|
|
// 9 pulses works with all satellite receivers, and supports the highest
|
|
// available protocol
|
|
const uint8_t num_pulses = 9;
|
|
for (uint8_t i=0; i<num_pulses; i++) {
|
|
hal.scheduler->delay_microseconds(120);
|
|
hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 0);
|
|
hal.scheduler->delay_microseconds(120);
|
|
hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1);
|
|
}
|
|
bind_last_ms = now;
|
|
bind_state = BIND_STATE4;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BIND_STATE4: {
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - bind_last_ms > 50) {
|
|
hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 0);
|
|
bind_state = BIND_STATE_NONE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
parse one DSM byte, maintaining decoder state
|
|
*/
|
|
bool AP_RCProtocol_DSM::dsm_parse_byte(uint32_t frame_time_us, uint8_t b, uint16_t *values,
|
|
uint16_t *num_values, uint16_t max_channels)
|
|
{
|
|
/* this is set by the decoding state machine and will default to false
|
|
* once everything that was decodable has been decoded.
|
|
*/
|
|
bool decode_ret = false;
|
|
|
|
// we took too long decoding, start again
|
|
if (byte_input.ofs > 0 && (frame_time_us - start_frame_time_us) > 6000U) {
|
|
start_frame_time_us = frame_time_us;
|
|
byte_input.ofs = 0;
|
|
}
|
|
|
|
// there will be at least a 5ms gap between successive DSM frames. if we see it
|
|
// assume we are starting a new frame
|
|
if ((frame_time_us - last_rx_time_us) > 5000U) {
|
|
start_frame_time_us = frame_time_us;
|
|
byte_input.ofs = 0;
|
|
}
|
|
|
|
/* overflow check */
|
|
if (byte_input.ofs >= AP_DSM_FRAME_SIZE) {
|
|
start_frame_time_us = frame_time_us;
|
|
byte_input.ofs = 0;
|
|
}
|
|
|
|
if (byte_input.ofs == 1) {
|
|
// saw a beginning of frame marker
|
|
if (b == DSM2_1024_22MS || b == DSM2_2048_11MS || b == DSMX_2048_22MS || b == DSMX_2048_11MS) {
|
|
if (b == DSM2_1024_22MS) {
|
|
// 10 bit frames
|
|
channel_shift = 2;
|
|
channel_mask = 0x03;
|
|
} else {
|
|
// 11 bit frames
|
|
channel_shift = 3;
|
|
channel_mask = 0x07;
|
|
}
|
|
// bad frame marker so reset
|
|
} else {
|
|
start_frame_time_us = frame_time_us;
|
|
byte_input.ofs = 0;
|
|
}
|
|
}
|
|
|
|
byte_input.buf[byte_input.ofs++] = b;
|
|
|
|
/* decode whatever we got and expect */
|
|
if (byte_input.ofs == AP_DSM_FRAME_SIZE) {
|
|
log_data(AP_RCProtocol::DSM, frame_time_us, byte_input.buf, byte_input.ofs);
|
|
#ifdef DSM_DEBUG
|
|
for (uint16_t i = 0; i < 16; i++) {
|
|
printf("%02x", byte_input.buf[i]);
|
|
}
|
|
printf("\n%02x%02x", byte_input.buf[0], byte_input.buf[1]);
|
|
for (uint16_t i = 2; i < 16; i+=2) {
|
|
printf(" %01x/%03x", (byte_input.buf[i] & 0x78) >> 4, (byte_input.buf[i] & 0x7) << 8 | byte_input.buf[i+1]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
decode_ret = dsm_decode(frame_time_us, byte_input.buf, values, &chan_count, max_channels);
|
|
|
|
/* we consumed the partial frame, reset */
|
|
byte_input.ofs = 0;
|
|
}
|
|
|
|
if (decode_ret) {
|
|
*num_values = chan_count;
|
|
}
|
|
|
|
last_rx_time_us = frame_time_us;
|
|
|
|
/* return false as default */
|
|
return decode_ret;
|
|
}
|
|
|
|
// support byte input
|
|
void AP_RCProtocol_DSM::_process_byte(uint32_t timestamp_us, uint8_t b)
|
|
{
|
|
uint16_t v[AP_DSM_MAX_CHANNELS];
|
|
uint16_t nchan;
|
|
memcpy(v, last_values, sizeof(v));
|
|
if (dsm_parse_byte(timestamp_us, b, v, &nchan, AP_DSM_MAX_CHANNELS)) {
|
|
memcpy(last_values, v, sizeof(v));
|
|
if (nchan >= MIN_RCIN_CHANNELS) {
|
|
add_input(nchan, last_values, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// support byte input
|
|
void AP_RCProtocol_DSM::process_byte(uint8_t b, uint32_t baudrate)
|
|
{
|
|
if (baudrate != 115200) {
|
|
return;
|
|
}
|
|
_process_byte(AP_HAL::micros(), b);
|
|
}
|