ardupilot/libraries/SITL/SITL.h
Peter Barker e8708227a1 SITL: new Loweheiser generator/efi sim
Co-authored-by: Joshua Henderson <hendjoshsr71@gmail.com>

SITL: break out common GeneratorEngine code
2024-01-23 11:27:30 +11:00

550 lines
18 KiB
C++

#pragma once
#include <AP_HAL/AP_HAL_Boards.h>
#if AP_SIM_ENABLED
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_Common/Location.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include "SIM_Buzzer.h"
#include "SIM_Gripper_EPM.h"
#include "SIM_Gripper_Servo.h"
#include "SIM_I2C.h"
#include "SIM_SPI.h"
#include "SIM_Parachute.h"
#include "SIM_Precland.h"
#include "SIM_Sprayer.h"
#include "SIM_ToneAlarm.h"
#include "SIM_EFI_MegaSquirt.h"
#include "SIM_RichenPower.h"
#include "SIM_Loweheiser.h"
#include "SIM_FETtecOneWireESC.h"
#include "SIM_IntelligentEnergy24.h"
#include "SIM_Ship.h"
#include "SIM_GPS.h"
#include "SIM_DroneCANDevice.h"
#include "SIM_ADSB_Sagetech_MXS.h"
namespace SITL {
enum class LedLayout {
ROWS=0,
LUMINOUSBEE=1,
};
struct vector3f_array {
uint16_t length;
Vector3f *data;
};
struct float_array {
uint16_t length;
float *data;
};
struct sitl_fdm {
// this is the structure passed between FDM models and the main SITL code
uint64_t timestamp_us;
Location home;
double latitude, longitude; // degrees
double altitude; // MSL
double heading; // degrees
double speedN, speedE, speedD; // m/s
double xAccel, yAccel, zAccel; // m/s/s in body frame
double rollRate, pitchRate, yawRate; // degrees/s in body frame
double rollDeg, pitchDeg, yawDeg; // euler angles, degrees
Quaternion quaternion;
double airspeed; // m/s
Vector3f velocity_air_bf; // velocity relative to airmass, body frame
double battery_voltage; // Volts
double battery_current; // Amps
double battery_remaining; // Ah, if non-zero capacity
uint8_t num_motors;
uint32_t motor_mask;
float rpm[32]; // RPM of all motors
uint8_t rcin_chan_count;
float rcin[12]; // RC input 0..1
double range; // rangefinder value
Vector3f bodyMagField; // Truth XYZ magnetic field vector in body-frame. Includes motor interference. Units are milli-Gauss.
Vector3f angAccel; // Angular acceleration in degrees/s/s about the XYZ body axes
struct {
// data from simulated laser scanner, if available
struct vector3f_array points;
struct float_array ranges;
} scanner;
#define SITL_NUM_RANGEFINDERS 10
float rangefinder_m[SITL_NUM_RANGEFINDERS];
float airspeed_raw_pressure[AIRSPEED_MAX_SENSORS];
struct {
float speed;
float direction;
} wind_vane_apparent;
bool is_lock_step_scheduled;
// earthframe wind, from backends that know it
Vector3f wind_ef;
// AGL altitude, usually derived from the terrain database in simulation:
float height_agl;
};
// number of rc output channels
#define SITL_NUM_CHANNELS 32
class SIM {
public:
SIM() {
AP_Param::setup_object_defaults(this, var_info);
AP_Param::setup_object_defaults(this, var_info2);
AP_Param::setup_object_defaults(this, var_info3);
#if HAL_SIM_GPS_ENABLED
AP_Param::setup_object_defaults(this, var_gps);
#endif
AP_Param::setup_object_defaults(this, var_mag);
AP_Param::setup_object_defaults(this, var_ins);
#ifdef SFML_JOYSTICK
AP_Param::setup_object_defaults(this, var_sfml_joystick);
#endif // SFML_JOYSTICK
for (uint8_t i=0; i<BARO_MAX_INSTANCES; i++) {
AP_Param::setup_object_defaults(&baro[i], baro[i].var_info);
}
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
AP_Param::setup_object_defaults(&airspeed[i], airspeed[i].var_info);
}
// set compass offset
for (uint8_t i = 0; i < HAL_COMPASS_MAX_SENSORS; i++) {
mag_ofs[i].set(Vector3f(5, 13, -18));
}
if (_singleton != nullptr) {
AP_HAL::panic("Too many SITL instances");
}
_singleton = this;
}
/* Do not allow copies */
CLASS_NO_COPY(SIM);
static SIM *_singleton;
static SIM *get_singleton() { return _singleton; }
enum SITL_RCFail {
SITL_RCFail_None = 0,
SITL_RCFail_NoPulses = 1,
SITL_RCFail_Throttle950 = 2,
};
enum GPSHeading {
GPS_HEADING_NONE = 0,
GPS_HEADING_HDT = 1,
GPS_HEADING_THS = 2,
GPS_HEADING_KSXT = 3,
};
struct sitl_fdm state;
// throttle when motors are active
float throttle;
static const struct AP_Param::GroupInfo var_info[];
static const struct AP_Param::GroupInfo var_info2[];
static const struct AP_Param::GroupInfo var_info3[];
#if HAL_SIM_GPS_ENABLED
static const struct AP_Param::GroupInfo var_gps[];
#endif
static const struct AP_Param::GroupInfo var_mag[];
static const struct AP_Param::GroupInfo var_ins[];
#ifdef SFML_JOYSTICK
static const struct AP_Param::GroupInfo var_sfml_joystick[];
#endif //SFML_JOYSTICK
// Board Orientation (and inverse)
Matrix3f ahrs_rotation;
Matrix3f ahrs_rotation_inv;
AP_Float mag_noise; // in mag units (earth field is 818)
AP_Vector3f mag_mot; // in mag units per amp
AP_Vector3f mag_ofs[HAL_COMPASS_MAX_SENSORS]; // in mag units
AP_Vector3f mag_diag[HAL_COMPASS_MAX_SENSORS]; // diagonal corrections
AP_Vector3f mag_offdiag[HAL_COMPASS_MAX_SENSORS]; // off-diagonal corrections
AP_Int8 mag_orient[HAL_COMPASS_MAX_SENSORS]; // external compass orientation
AP_Int8 mag_fail[HAL_COMPASS_MAX_SENSORS]; // fail magnetometer, 1 for no data, 2 for freeze
AP_Int8 mag_save_ids;
AP_Float servo_speed; // servo speed in seconds
AP_Float sonar_glitch;// probability between 0-1 that any given sonar sample will read as max distance
AP_Float sonar_noise; // in metres
AP_Float sonar_scale; // meters per volt
AP_Int8 sonar_rot; // from rotations enumeration
AP_Float drift_speed; // degrees/second/minute
AP_Float drift_time; // period in minutes
AP_Float engine_mul; // engine multiplier
AP_Int8 engine_fail; // engine servo to fail (0-7)
AP_Float gps_noise[2]; // amplitude of the gps altitude error
AP_Int16 gps_lock_time[2]; // delay in seconds before GPS gets lock
AP_Int16 gps_alt_offset[2]; // gps alt error
AP_Int8 gps_disable[2]; // disable simulated GPS
AP_Int16 gps_delay_ms[2]; // delay in milliseconds
AP_Int8 gps_type[2]; // see enum SITL::GPS::Type
AP_Float gps_byteloss[2];// byte loss as a percent
AP_Int8 gps_numsats[2]; // number of visible satellites
AP_Vector3f gps_glitch[2]; // glitch offsets in lat, lon and altitude
AP_Int8 gps_hertz[2]; // GPS update rate in Hz
AP_Int8 gps_hdg_enabled[2]; // enable the output of a NMEA heading HDT sentence or UBLOX RELPOSNED
AP_Float gps_drift_alt[2]; // altitude drift error
AP_Vector3f gps_pos_offset[2]; // XYZ position of the GPS antenna phase centre relative to the body frame origin (m)
AP_Float gps_accuracy[2];
AP_Vector3f gps_vel_err[2]; // Velocity error offsets in NED (x = N, y = E, z = D)
AP_Int8 gps_jam[2]; // jamming simulation enable
// initial offset on GPS lat/lon, used to shift origin
AP_Float gps_init_lat_ofs;
AP_Float gps_init_lon_ofs;
AP_Float gps_init_alt_ofs;
// log number for GPS::update_file()
AP_Int16 gps_log_num;
AP_Float batt_voltage; // battery voltage base
AP_Float batt_capacity_ah; // battery capacity in Ah
AP_Int8 rc_fail; // fail RC input
AP_Int8 rc_chancount; // channel count
AP_Int8 float_exception; // enable floating point exception checks
AP_Int32 can_servo_mask; // mask of servos/escs coming from CAN
#if HAL_NUM_CAN_IFACES
enum class CANTransport : uint8_t {
MulticastUDP = 0,
SocketCAN = 1
};
AP_Enum<CANTransport> can_transport[HAL_NUM_CAN_IFACES];
#endif
AP_Int8 flow_enable; // enable simulated optflow
AP_Int16 flow_rate; // optflow data rate (Hz)
AP_Int8 flow_delay; // optflow data delay
AP_Int8 terrain_enable; // enable using terrain for height
AP_Int16 pin_mask; // for GPIO emulation
AP_Float speedup; // simulation speedup
AP_Int8 odom_enable; // enable visual odometry data
AP_Int8 telem_baudlimit_enable; // enable baudrate limiting on links
AP_Float flow_noise; // optical flow measurement noise (rad/sec)
AP_Int8 baro_count; // number of simulated baros to create
AP_Int8 imu_count; // number of simulated IMUs to create
AP_Int32 loop_delay; // extra delay to add to every loop
AP_Float mag_scaling[MAX_CONNECTED_MAGS]; // scaling factor
AP_Int32 mag_devid[MAX_CONNECTED_MAGS]; // Mag devid
AP_Float buoyancy; // submarine buoyancy in Newtons
AP_Int16 loop_rate_hz;
AP_Int16 loop_time_jitter_us;
AP_Int32 on_hardware_output_enable_mask; // mask of output channels passed through to actual hardware
AP_Int16 on_hardware_relay_enable_mask; // mask of relays passed through to actual hardware
AP_Float uart_byte_loss_pct;
#ifdef SFML_JOYSTICK
AP_Int8 sfml_joystick_id;
AP_Int8 sfml_joystick_axis[8];
#endif
// baro parameters
class BaroParm {
public:
static const struct AP_Param::GroupInfo var_info[];
AP_Float noise; // in metres
AP_Float drift; // in metres per second
AP_Float glitch; // glitch in meters
AP_Int8 freeze; // freeze baro to last recorded altitude
AP_Int8 disable; // disable simulated barometers
AP_Int16 delay; // barometer data delay in ms
// wind coefficients
AP_Float wcof_xp;
AP_Float wcof_xn;
AP_Float wcof_yp;
AP_Float wcof_yn;
AP_Float wcof_zp;
AP_Float wcof_zn;
};
BaroParm baro[BARO_MAX_INSTANCES];
// airspeed parameters
class AirspeedParm {
public:
static const struct AP_Param::GroupInfo var_info[];
AP_Float noise; // pressure noise
AP_Float fail; // airspeed value in m/s to fail to
AP_Float fail_pressure; // pitot tube failure pressure in Pa
AP_Float fail_pitot_pressure; // pitot tube failure pressure in Pa
AP_Float offset; // airspeed sensor offset in m/s
AP_Float ratio; // airspeed ratios
AP_Int8 signflip;
};
AirspeedParm airspeed[AIRSPEED_MAX_SENSORS];
// EFI type
enum EFIType {
EFI_TYPE_NONE = 0,
EFI_TYPE_MS = 1,
EFI_TYPE_LOWEHEISER = 2,
EFI_TYPE_HIRTH = 8,
};
AP_Int8 efi_type;
// wind control
enum WindType {
WIND_TYPE_SQRT = 0,
WIND_TYPE_NO_LIMIT = 1,
WIND_TYPE_COEF = 2,
};
float wind_speed_active;
float wind_direction_active;
float wind_dir_z_active;
AP_Float wind_speed;
AP_Float wind_direction;
AP_Float wind_turbulance;
AP_Float wind_dir_z;
AP_Int8 wind_type; // enum WindLimitType
AP_Float wind_type_alt;
AP_Float wind_type_coef;
AP_Int16 mag_delay; // magnetometer data delay in ms
// ADSB related run-time options
enum class ADSBType {
Shortcut = 0,
SageTechMXS = 3,
};
AP_Enum<ADSBType> adsb_types; // bitmask of active ADSB types
AP_Int16 adsb_plane_count;
AP_Float adsb_radius_m;
AP_Float adsb_altitude_m;
AP_Int8 adsb_tx;
// Earth magnetic field anomaly
AP_Vector3f mag_anomaly_ned; // NED anomaly vector at ground level (mGauss)
AP_Float mag_anomaly_hgt; // height above ground where anomally strength has decayed to 1/8 of the ground level value (m)
// Body frame sensor position offsets
AP_Vector3f imu_pos_offset; // XYZ position of the IMU accelerometer relative to the body frame origin (m)
AP_Vector3f rngfnd_pos_offset; // XYZ position of the range finder zero range datum relative to the body frame origin (m)
AP_Vector3f optflow_pos_offset; // XYZ position of the optical flow sensor focal point relative to the body frame origin (m)
AP_Vector3f vicon_pos_offset; // XYZ position of the vicon sensor relative to the body frame origin (m)
// barometer temperature control
AP_Float temp_start; // [deg C] Barometer start temperature
AP_Float temp_board_offset; // [deg C] Barometer board temperature offset from atmospheric temperature
AP_Float temp_tconst; // [deg C] Barometer warmup temperature time constant
AP_Float temp_baro_factor;
AP_Int8 thermal_scenario;
// weight on wheels pin
AP_Int8 wow_pin;
// vibration frequencies in Hz on each axis
AP_Vector3f vibe_freq;
// max frequency to use as baseline for adding motor noise for the gyros and accels
AP_Float vibe_motor;
// amplitude scaling of motor noise relative to gyro/accel noise
AP_Float vibe_motor_scale;
// what harmonics to generate
AP_Int16 vibe_motor_harmonics;
// what servos are motors
AP_Int32 vibe_motor_mask;
// minimum throttle for addition of ins noise
AP_Float ins_noise_throttle_min;
struct {
AP_Float x;
AP_Float y;
AP_Float z;
AP_Int32 t;
uint32_t start_ms;
} shove;
struct {
AP_Float x;
AP_Float y;
AP_Float z;
AP_Int32 t;
uint32_t start_ms;
} twist;
AP_Int8 gnd_behav;
struct {
AP_Int8 enable; // 0: disabled, 1: roll and pitch, 2: roll, pitch and heave
AP_Float length; // m
AP_Float amp; // m
AP_Float direction; // deg (direction wave is coming from)
AP_Float speed; // m/s
} wave;
struct {
AP_Float direction; // deg (direction tide is coming from)
AP_Float speed; // m/s
} tide;
// original simulated position
struct {
AP_Float lat;
AP_Float lng;
AP_Float alt; // metres
AP_Float hdg; // 0 to 360
} opos;
uint16_t irlock_port;
time_t start_time_UTC;
void simstate_send(mavlink_channel_t chan) const;
void sim_state_send(mavlink_channel_t chan) const;
void Log_Write_SIMSTATE();
// convert a set of roll rates from earth frame to body frame
static void convert_body_frame(double rollDeg, double pitchDeg,
double rollRate, double pitchRate, double yawRate,
double *p, double *q, double *r);
// convert a set of roll rates from body frame to earth frame
static Vector3f convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro);
int i2c_ioctl(uint8_t i2c_operation, void *data) {
return i2c_sim.ioctl(i2c_operation, data);
}
int spi_ioctl(uint8_t bus, uint8_t cs_pin, uint8_t spi_operation, void *data) {
return spi_sim.ioctl(bus, cs_pin, spi_operation, data);
}
Sprayer sprayer_sim;
// simulated ship takeoffs
#if AP_SIM_SHIP_ENABLED
ShipSim shipsim;
#endif
Gripper_Servo gripper_sim;
Gripper_EPM gripper_epm_sim;
Parachute parachute_sim;
Buzzer buzzer_sim;
I2C i2c_sim;
SPI spi_sim;
ToneAlarm tonealarm_sim;
SIM_Precland precland_sim;
RichenPower richenpower_sim;
#if AP_SIM_LOWEHEISER_ENABLED
Loweheiser loweheiser_sim;
#endif
IntelligentEnergy24 ie24_sim;
FETtecOneWireESC fetteconewireesc_sim;
#if AP_TEST_DRONECAN_DRIVERS
DroneCANDevice dronecan_sim;
#endif
// ESC telemetry
AP_Int8 esc_telem;
// RPM when motors are armed
AP_Float esc_rpm_armed;
struct {
// LED state, for serial LED emulation
struct {
uint8_t rgb[3];
} rgb[16][32];
uint8_t num_leds[16];
uint32_t send_counter;
} led;
AP_Int8 led_layout;
// vicon parameters
AP_Vector3f vicon_glitch; // glitch in meters in vicon's local NED frame
AP_Int8 vicon_fail; // trigger vicon failure
AP_Int16 vicon_yaw; // vicon local yaw in degrees
AP_Int16 vicon_yaw_error; // vicon yaw error in degrees (added to reported yaw sent to vehicle)
AP_Int8 vicon_type_mask; // vicon message type mask (bit0:vision position estimate, bit1:vision speed estimate, bit2:vicon position estimate)
AP_Vector3f vicon_vel_glitch; // velocity glitch in m/s in vicon's local frame
// get the rangefinder reading for the desired instance, returns -1 for no data
float get_rangefinder(uint8_t instance);
float measure_distance_at_angle_bf(const Location &location, float angle) const;
// get the apparent wind speed and direction as set by external physics backend
float get_apparent_wind_dir() const{return state.wind_vane_apparent.direction;}
float get_apparent_wind_spd() const{return state.wind_vane_apparent.speed;}
#if HAL_INS_TEMPERATURE_CAL_ENABLE
// IMU temperature calibration params
AP_Float imu_temp_start;
AP_Float imu_temp_end;
AP_Float imu_temp_tconst;
AP_Float imu_temp_fixed;
AP_InertialSensor_TCal imu_tcal[INS_MAX_INSTANCES];
#endif
// IMU control parameters
AP_Float gyro_noise[INS_MAX_INSTANCES]; // in degrees/second
AP_Vector3f gyro_scale[INS_MAX_INSTANCES]; // percentage
AP_Vector3f gyro_bias[INS_MAX_INSTANCES]; // in rad/s
AP_Float accel_noise[INS_MAX_INSTANCES]; // in m/s/s
AP_Vector3f accel_bias[INS_MAX_INSTANCES]; // in m/s/s
AP_Vector3f accel_scale[INS_MAX_INSTANCES]; // in m/s/s
AP_Vector3f accel_trim;
AP_Float accel_fail[INS_MAX_INSTANCES]; // accelerometer failure value
// gyro and accel fail masks
AP_Int8 gyro_fail_mask;
AP_Int8 accel_fail_mask;
// Sailboat sim only
AP_Int8 sail_type;
// Master instance to use servos from with slave instances
AP_Int8 ride_along_master;
#if AP_SIM_INS_FILE_ENABLED
enum INSFileMode {
INS_FILE_NONE = 0,
INS_FILE_READ = 1,
INS_FILE_WRITE = 2,
INS_FILE_READ_STOP_ON_EOF = 3,
};
AP_Int8 gyro_file_rw;
AP_Int8 accel_file_rw;
#endif
};
} // namespace SITL
namespace AP {
SITL::SIM *sitl();
};
#endif // AP_SIM_ENABLED