mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 01:48:29 -04:00
460 lines
14 KiB
Python
460 lines
14 KiB
Python
import math
|
|
from math import sqrt, acos, cos, pi, sin, atan2
|
|
import os, sys, time, random
|
|
from rotmat import Vector3, Matrix3
|
|
from subprocess import call, check_call,Popen, PIPE
|
|
|
|
def m2ft(x):
|
|
'''meters to feet'''
|
|
return float(x) / 0.3048
|
|
|
|
def ft2m(x):
|
|
'''feet to meters'''
|
|
return float(x) * 0.3048
|
|
|
|
def kt2mps(x):
|
|
return x * 0.514444444
|
|
|
|
def mps2kt(x):
|
|
return x / 0.514444444
|
|
|
|
def topdir():
|
|
'''return top of git tree where autotest is running from'''
|
|
d = os.path.dirname(os.path.realpath(__file__))
|
|
assert(os.path.basename(d)=='pysim')
|
|
d = os.path.dirname(d)
|
|
assert(os.path.basename(d)=='autotest')
|
|
d = os.path.dirname(d)
|
|
assert(os.path.basename(d)=='Tools')
|
|
d = os.path.dirname(d)
|
|
return d
|
|
|
|
def reltopdir(path):
|
|
'''return a path relative to topdir()'''
|
|
return os.path.normpath(os.path.join(topdir(), path))
|
|
|
|
|
|
def run_cmd(cmd, dir=".", show=False, output=False, checkfail=True):
|
|
'''run a shell command'''
|
|
if show:
|
|
print("Running: '%s' in '%s'" % (cmd, dir))
|
|
if output:
|
|
return Popen([cmd], shell=True, stdout=PIPE, cwd=dir).communicate()[0]
|
|
elif checkfail:
|
|
return check_call(cmd, shell=True, cwd=dir)
|
|
else:
|
|
return call(cmd, shell=True, cwd=dir)
|
|
|
|
def rmfile(path):
|
|
'''remove a file if it exists'''
|
|
try:
|
|
os.unlink(path)
|
|
except Exception:
|
|
pass
|
|
|
|
def deltree(path):
|
|
'''delete a tree of files'''
|
|
run_cmd('rm -rf %s' % path)
|
|
|
|
|
|
|
|
def build_SIL(atype, target='sitl', j=1):
|
|
'''build desktop SIL'''
|
|
run_cmd("make clean",
|
|
dir=reltopdir(atype),
|
|
checkfail=True)
|
|
run_cmd("make -j%u %s" % (j, target),
|
|
dir=reltopdir(atype),
|
|
checkfail=True)
|
|
return True
|
|
|
|
# list of pexpect children to close on exit
|
|
close_list = []
|
|
|
|
def pexpect_autoclose(p):
|
|
'''mark for autoclosing'''
|
|
global close_list
|
|
close_list.append(p)
|
|
|
|
def pexpect_close(p):
|
|
'''close a pexpect child'''
|
|
global close_list
|
|
|
|
try:
|
|
p.close()
|
|
except Exception:
|
|
pass
|
|
try:
|
|
p.close(force=True)
|
|
except Exception:
|
|
pass
|
|
if p in close_list:
|
|
close_list.remove(p)
|
|
|
|
def pexpect_close_all():
|
|
'''close all pexpect children'''
|
|
global close_list
|
|
for p in close_list[:]:
|
|
pexpect_close(p)
|
|
|
|
def pexpect_drain(p):
|
|
'''drain any pending input'''
|
|
import pexpect
|
|
try:
|
|
p.read_nonblocking(1000, timeout=0)
|
|
except pexpect.TIMEOUT:
|
|
pass
|
|
|
|
def start_SIL(atype, valgrind=False, gdb=False, wipe=False, synthetic_clock=True, home=None, model=None, speedup=1, defaults_file=None):
|
|
'''launch a SIL instance'''
|
|
import pexpect
|
|
cmd=""
|
|
if valgrind and os.path.exists('/usr/bin/valgrind'):
|
|
cmd += 'valgrind -q --log-file=%s-valgrind.log ' % atype
|
|
if gdb:
|
|
f = open("/tmp/x.gdb", "w")
|
|
f.write("r\n");
|
|
f.close()
|
|
cmd += 'xterm -e gdb -x /tmp/x.gdb --args '
|
|
executable = reltopdir('tmp/%s.build/%s.elf' % (atype, atype))
|
|
if not os.path.exists(executable):
|
|
executable = '/tmp/%s.build/%s.elf' % (atype, atype)
|
|
cmd += executable
|
|
if wipe:
|
|
cmd += ' -w'
|
|
if synthetic_clock:
|
|
cmd += ' -S'
|
|
if home is not None:
|
|
cmd += ' --home=%s' % home
|
|
if model is not None:
|
|
cmd += ' --model=%s' % model
|
|
if speedup != 1:
|
|
cmd += ' --speedup=%f' % speedup
|
|
if defaults_file is not None:
|
|
cmd += ' --defaults=%s' % defaults_file
|
|
print("Running: %s" % cmd)
|
|
ret = pexpect.spawn(cmd, logfile=sys.stdout, timeout=5)
|
|
ret.delaybeforesend = 0
|
|
pexpect_autoclose(ret)
|
|
# give time for parameters to properly setup
|
|
time.sleep(3)
|
|
ret.expect('Waiting for connection',timeout=300)
|
|
return ret
|
|
|
|
def start_MAVProxy_SIL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760',
|
|
options=None, logfile=sys.stdout):
|
|
'''launch mavproxy connected to a SIL instance'''
|
|
import pexpect
|
|
global close_list
|
|
MAVPROXY = os.getenv('MAVPROXY_CMD', 'mavproxy.py')
|
|
cmd = MAVPROXY + ' --master=%s --out=127.0.0.1:14550' % master
|
|
if setup:
|
|
cmd += ' --setup'
|
|
if aircraft is None:
|
|
aircraft = 'test.%s' % atype
|
|
cmd += ' --aircraft=%s' % aircraft
|
|
if options is not None:
|
|
cmd += ' ' + options
|
|
ret = pexpect.spawn(cmd, logfile=logfile, timeout=60)
|
|
ret.delaybeforesend = 0
|
|
pexpect_autoclose(ret)
|
|
return ret
|
|
|
|
|
|
def expect_setup_callback(e, callback):
|
|
'''setup a callback that is called once a second while waiting for
|
|
patterns'''
|
|
import pexpect
|
|
def _expect_callback(pattern, timeout=e.timeout):
|
|
tstart = time.time()
|
|
while time.time() < tstart + timeout:
|
|
try:
|
|
ret = e.expect_saved(pattern, timeout=1)
|
|
return ret
|
|
except pexpect.TIMEOUT:
|
|
e.expect_user_callback(e)
|
|
pass
|
|
print("Timed out looking for %s" % pattern)
|
|
raise pexpect.TIMEOUT(timeout)
|
|
|
|
e.expect_user_callback = callback
|
|
e.expect_saved = e.expect
|
|
e.expect = _expect_callback
|
|
|
|
def mkdir_p(dir):
|
|
'''like mkdir -p'''
|
|
if not dir:
|
|
return
|
|
if dir.endswith("/"):
|
|
mkdir_p(dir[:-1])
|
|
return
|
|
if os.path.isdir(dir):
|
|
return
|
|
mkdir_p(os.path.dirname(dir))
|
|
os.mkdir(dir)
|
|
|
|
def loadfile(fname):
|
|
'''load a file as a string'''
|
|
f = open(fname, mode='r')
|
|
r = f.read()
|
|
f.close()
|
|
return r
|
|
|
|
def lock_file(fname):
|
|
'''lock a file'''
|
|
import fcntl
|
|
f = open(fname, mode='w')
|
|
try:
|
|
fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB)
|
|
except Exception:
|
|
return None
|
|
return f
|
|
|
|
def check_parent(parent_pid=None):
|
|
'''check our parent process is still alive'''
|
|
if parent_pid is None:
|
|
try:
|
|
parent_pid = os.getppid()
|
|
except Exception:
|
|
pass
|
|
if parent_pid is None:
|
|
return
|
|
try:
|
|
os.kill(parent_pid, 0)
|
|
except Exception:
|
|
print("Parent had finished - exiting")
|
|
sys.exit(1)
|
|
|
|
|
|
def EarthRatesToBodyRates(dcm, earth_rates):
|
|
'''convert the angular velocities from earth frame to
|
|
body frame. Thanks to James Goppert for the formula
|
|
|
|
all inputs and outputs are in radians
|
|
|
|
returns a gyro vector in body frame, in rad/s
|
|
'''
|
|
from math import sin, cos
|
|
|
|
(phi, theta, psi) = dcm.to_euler()
|
|
phiDot = earth_rates.x
|
|
thetaDot = earth_rates.y
|
|
psiDot = earth_rates.z
|
|
|
|
p = phiDot - psiDot*sin(theta)
|
|
q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta)
|
|
r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot
|
|
return Vector3(p, q, r)
|
|
|
|
def BodyRatesToEarthRates(dcm, gyro):
|
|
'''convert the angular velocities from body frame to
|
|
earth frame.
|
|
|
|
all inputs and outputs are in radians/s
|
|
|
|
returns a earth rate vector
|
|
'''
|
|
from math import sin, cos, tan, fabs
|
|
|
|
p = gyro.x
|
|
q = gyro.y
|
|
r = gyro.z
|
|
|
|
(phi, theta, psi) = dcm.to_euler()
|
|
|
|
phiDot = p + tan(theta)*(q*sin(phi) + r*cos(phi))
|
|
thetaDot = q*cos(phi) - r*sin(phi)
|
|
if fabs(cos(theta)) < 1.0e-20:
|
|
theta += 1.0e-10
|
|
psiDot = (q*sin(phi) + r*cos(phi))/cos(theta)
|
|
return Vector3(phiDot, thetaDot, psiDot)
|
|
|
|
radius_of_earth = 6378100.0 # in meters
|
|
|
|
def gps_newpos(lat, lon, bearing, distance):
|
|
'''extrapolate latitude/longitude given a heading and distance
|
|
thanks to http://www.movable-type.co.uk/scripts/latlong.html
|
|
'''
|
|
from math import sin, asin, cos, atan2, radians, degrees
|
|
|
|
lat1 = radians(lat)
|
|
lon1 = radians(lon)
|
|
brng = radians(bearing)
|
|
dr = distance/radius_of_earth
|
|
|
|
lat2 = asin(sin(lat1)*cos(dr) +
|
|
cos(lat1)*sin(dr)*cos(brng))
|
|
lon2 = lon1 + atan2(sin(brng)*sin(dr)*cos(lat1),
|
|
cos(dr)-sin(lat1)*sin(lat2))
|
|
return (degrees(lat2), degrees(lon2))
|
|
|
|
|
|
def gps_distance(lat1, lon1, lat2, lon2):
|
|
'''return distance between two points in meters,
|
|
coordinates are in degrees
|
|
thanks to http://www.movable-type.co.uk/scripts/latlong.html'''
|
|
lat1 = math.radians(lat1)
|
|
lat2 = math.radians(lat2)
|
|
lon1 = math.radians(lon1)
|
|
lon2 = math.radians(lon2)
|
|
dLat = lat2 - lat1
|
|
dLon = lon2 - lon1
|
|
|
|
a = math.sin(0.5*dLat)**2 + math.sin(0.5*dLon)**2 * math.cos(lat1) * math.cos(lat2)
|
|
c = 2.0 * math.atan2(math.sqrt(a), math.sqrt(1.0-a))
|
|
return radius_of_earth * c
|
|
|
|
def gps_bearing(lat1, lon1, lat2, lon2):
|
|
'''return bearing between two points in degrees, in range 0-360
|
|
thanks to http://www.movable-type.co.uk/scripts/latlong.html'''
|
|
lat1 = math.radians(lat1)
|
|
lat2 = math.radians(lat2)
|
|
lon1 = math.radians(lon1)
|
|
lon2 = math.radians(lon2)
|
|
dLat = lat2 - lat1
|
|
dLon = lon2 - lon1
|
|
y = math.sin(dLon) * math.cos(lat2)
|
|
x = math.cos(lat1)*math.sin(lat2) - math.sin(lat1)*math.cos(lat2)*math.cos(dLon)
|
|
bearing = math.degrees(math.atan2(y, x))
|
|
if bearing < 0:
|
|
bearing += 360.0
|
|
return bearing
|
|
|
|
class Wind(object):
|
|
'''a wind generation object'''
|
|
def __init__(self, windstring, cross_section=0.1):
|
|
a = windstring.split(',')
|
|
if len(a) != 3:
|
|
raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring)
|
|
self.speed = float(a[0]) # m/s
|
|
self.direction = float(a[1]) # direction the wind is going in
|
|
self.turbulance= float(a[2]) # turbulance factor (standard deviation)
|
|
|
|
# the cross-section of the aircraft to wind. This is multiplied by the
|
|
# difference in the wind and the velocity of the aircraft to give the acceleration
|
|
self.cross_section = cross_section
|
|
|
|
# the time constant for the turbulance - the average period of the
|
|
# changes over time
|
|
self.turbulance_time_constant = 5.0
|
|
|
|
# wind time record
|
|
self.tlast = time.time()
|
|
|
|
# initial turbulance multiplier
|
|
self.turbulance_mul = 1.0
|
|
|
|
def current(self, deltat=None):
|
|
'''return current wind speed and direction as a tuple
|
|
speed is in m/s, direction in degrees
|
|
'''
|
|
if deltat is None:
|
|
tnow = time.time()
|
|
deltat = tnow - self.tlast
|
|
self.tlast = tnow
|
|
|
|
# update turbulance random walk
|
|
w_delta = math.sqrt(deltat)*(1.0-random.gauss(1.0, self.turbulance))
|
|
w_delta -= (self.turbulance_mul-1.0)*(deltat/self.turbulance_time_constant)
|
|
self.turbulance_mul += w_delta
|
|
speed = self.speed * math.fabs(self.turbulance_mul)
|
|
return (speed, self.direction)
|
|
|
|
|
|
# Calculate drag.
|
|
def drag(self, velocity, deltat=None, testing=None):
|
|
'''return current wind force in Earth frame. The velocity parameter is
|
|
a Vector3 of the current velocity of the aircraft in earth frame, m/s'''
|
|
from math import radians
|
|
|
|
# (m/s, degrees) : wind vector as a magnitude and angle.
|
|
(speed, direction) = self.current(deltat=deltat)
|
|
# speed = self.speed
|
|
# direction = self.direction
|
|
|
|
# Get the wind vector.
|
|
w = toVec(speed, radians(direction))
|
|
|
|
obj_speed = velocity.length()
|
|
|
|
# Compute the angle between the object vector and wind vector by taking
|
|
# the dot product and dividing by the magnitudes.
|
|
d = w.length() * obj_speed
|
|
if d == 0:
|
|
alpha = 0
|
|
else:
|
|
alpha = acos((w * velocity) / d)
|
|
|
|
# Get the relative wind speed and angle from the object. Note that the
|
|
# relative wind speed includes the velocity of the object; i.e., there
|
|
# is a headwind equivalent to the object's speed even if there is no
|
|
# absolute wind.
|
|
(rel_speed, beta) = apparent_wind(speed, obj_speed, alpha)
|
|
|
|
# Return the vector of the relative wind, relative to the coordinate
|
|
# system.
|
|
relWindVec = toVec(rel_speed, beta + atan2(velocity.y, velocity.x))
|
|
|
|
# Combine them to get the acceleration vector.
|
|
return Vector3( acc(relWindVec.x, drag_force(self, relWindVec.x))
|
|
, acc(relWindVec.y, drag_force(self, relWindVec.y))
|
|
, 0 )
|
|
|
|
# http://en.wikipedia.org/wiki/Apparent_wind
|
|
#
|
|
# Returns apparent wind speed and angle of apparent wind. Alpha is the angle
|
|
# between the object and the true wind. alpha of 0 rads is a headwind; pi a
|
|
# tailwind. Speeds should always be positive.
|
|
def apparent_wind(wind_sp, obj_speed, alpha):
|
|
delta = wind_sp * cos(alpha)
|
|
x = wind_sp**2 + obj_speed**2 + 2 * obj_speed * delta
|
|
rel_speed = sqrt(x)
|
|
if rel_speed == 0:
|
|
beta = pi
|
|
else:
|
|
beta = acos((delta + obj_speed) / rel_speed)
|
|
|
|
return (rel_speed, beta)
|
|
|
|
# See http://en.wikipedia.org/wiki/Drag_equation
|
|
#
|
|
# Drag equation is F(a) = cl * p/2 * v^2 * a, where cl : drag coefficient
|
|
# (let's assume it's low, .e.g., 0.2), p : density of air (assume about 1
|
|
# kg/m^3, the density just over 1500m elevation), v : relative speed of wind
|
|
# (to the body), a : area acted on (this is captured by the cross_section
|
|
# paramter).
|
|
#
|
|
# So then we have
|
|
# F(a) = 0.2 * 1/2 * v^2 * cross_section = 0.1 * v^2 * cross_section
|
|
def drag_force(wind, sp):
|
|
return (sp**2.0) * 0.1 * wind.cross_section
|
|
|
|
# Function to make the force vector. relWindVec is the direction the apparent
|
|
# wind comes *from*. We want to compute the accleration vector in the direction
|
|
# the wind blows to.
|
|
def acc(val, mag):
|
|
if val == 0:
|
|
return mag
|
|
else:
|
|
return (val / abs(val)) * (0 - mag)
|
|
|
|
# Converts a magnitude and angle (radians) to a vector in the xy plane.
|
|
def toVec(magnitude, angle):
|
|
v = Vector3(magnitude, 0, 0)
|
|
m = Matrix3()
|
|
m.from_euler(0, 0, angle)
|
|
return m.transposed() * v
|
|
|
|
def constrain(value, minv, maxv):
|
|
'''constrain a value to a range'''
|
|
if value < minv:
|
|
value = minv
|
|
if value > maxv:
|
|
value = maxv
|
|
return value
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
doctest.testmod()
|
|
|