mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
c8a20726ff
this is only used in one place, and that place is called from the same routine setting the persistent state. The only other place which calls readIMUData shouldn't be running the prediction step, but mmay, depending on the previous setting of the prediction step. We are not initialising this state on filter reset, so it's possible that the state will be set when we do an InitialiseFilterBootstrap, which is probably not desired
1509 lines
62 KiB
C++
1509 lines
62 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_NavEKF3_core.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <AP_DAL/AP_DAL.h>
|
|
#include <AP_InternalError/AP_InternalError.h>
|
|
|
|
#if AP_RANGEFINDER_ENABLED
|
|
/********************************************************
|
|
* OPT FLOW AND RANGE FINDER *
|
|
********************************************************/
|
|
|
|
// Read the range finder and take new measurements if available
|
|
// Apply a median filter
|
|
void NavEKF3_core::readRangeFinder(void)
|
|
{
|
|
uint8_t midIndex;
|
|
uint8_t maxIndex;
|
|
uint8_t minIndex;
|
|
// get theoretical correct range when the vehicle is on the ground
|
|
// don't allow range to go below 5cm because this can cause problems with optical flow processing
|
|
const auto *_rng = dal.rangefinder();
|
|
if (_rng == nullptr) {
|
|
return;
|
|
}
|
|
rngOnGnd = MAX(_rng->ground_clearance_cm_orient(ROTATION_PITCH_270) * 0.01f, 0.05f);
|
|
|
|
// limit update rate to maximum allowed by data buffers
|
|
if ((imuSampleTime_ms - lastRngMeasTime_ms) > frontend->sensorIntervalMin_ms) {
|
|
|
|
// reset the timer used to control the measurement rate
|
|
lastRngMeasTime_ms = imuSampleTime_ms;
|
|
|
|
// store samples and sample time into a ring buffer if valid
|
|
// use data from two range finders if available
|
|
|
|
for (uint8_t sensorIndex = 0; sensorIndex < ARRAY_SIZE(rngMeasIndex); sensorIndex++) {
|
|
const auto *sensor = _rng->get_backend(sensorIndex);
|
|
if (sensor == nullptr) {
|
|
continue;
|
|
}
|
|
if ((sensor->orientation() == ROTATION_PITCH_270) && (sensor->status() == AP_DAL_RangeFinder::Status::Good)) {
|
|
rngMeasIndex[sensorIndex] ++;
|
|
if (rngMeasIndex[sensorIndex] > 2) {
|
|
rngMeasIndex[sensorIndex] = 0;
|
|
}
|
|
storedRngMeasTime_ms[sensorIndex][rngMeasIndex[sensorIndex]] = imuSampleTime_ms - 25;
|
|
storedRngMeas[sensorIndex][rngMeasIndex[sensorIndex]] = sensor->distance_cm() * 0.01f;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
// check for three fresh samples
|
|
bool sampleFresh[DOWNWARD_RANGEFINDER_MAX_INSTANCES][3] = {};
|
|
for (uint8_t index = 0; index <= 2; index++) {
|
|
sampleFresh[sensorIndex][index] = (imuSampleTime_ms - storedRngMeasTime_ms[sensorIndex][index]) < 500;
|
|
}
|
|
|
|
// find the median value if we have three fresh samples
|
|
if (sampleFresh[sensorIndex][0] && sampleFresh[sensorIndex][1] && sampleFresh[sensorIndex][2]) {
|
|
if (storedRngMeas[sensorIndex][0] > storedRngMeas[sensorIndex][1]) {
|
|
minIndex = 1;
|
|
maxIndex = 0;
|
|
} else {
|
|
minIndex = 0;
|
|
maxIndex = 1;
|
|
}
|
|
if (storedRngMeas[sensorIndex][2] > storedRngMeas[sensorIndex][maxIndex]) {
|
|
midIndex = maxIndex;
|
|
} else if (storedRngMeas[sensorIndex][2] < storedRngMeas[sensorIndex][minIndex]) {
|
|
midIndex = minIndex;
|
|
} else {
|
|
midIndex = 2;
|
|
}
|
|
|
|
// don't allow time to go backwards
|
|
if (storedRngMeasTime_ms[sensorIndex][midIndex] > rangeDataNew.time_ms) {
|
|
rangeDataNew.time_ms = storedRngMeasTime_ms[sensorIndex][midIndex];
|
|
}
|
|
|
|
// limit the measured range to be no less than the on-ground range
|
|
rangeDataNew.rng = MAX(storedRngMeas[sensorIndex][midIndex],rngOnGnd);
|
|
|
|
// get position in body frame for the current sensor
|
|
rangeDataNew.sensor_idx = sensorIndex;
|
|
|
|
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
|
|
storedRange.push(rangeDataNew);
|
|
|
|
// indicate we have updated the measurement
|
|
rngValidMeaTime_ms = imuSampleTime_ms;
|
|
|
|
} else if (onGround && ((imuSampleTime_ms - rngValidMeaTime_ms) > 200)) {
|
|
// before takeoff we assume on-ground range value if there is no data
|
|
rangeDataNew.time_ms = imuSampleTime_ms;
|
|
rangeDataNew.rng = rngOnGnd;
|
|
|
|
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it
|
|
storedRange.push(rangeDataNew);
|
|
|
|
// indicate we have updated the measurement
|
|
rngValidMeaTime_ms = imuSampleTime_ms;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // AP_RANGEFINDER_ENABLED
|
|
|
|
void NavEKF3_core::writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, uint16_t delay_ms, const Vector3f &posOffset)
|
|
{
|
|
#if EK3_FEATURE_BODY_ODOM
|
|
// protect against NaN
|
|
if (isnan(quality) || delPos.is_nan() || delAng.is_nan() || isnan(delTime) || posOffset.is_nan()) {
|
|
return;
|
|
}
|
|
|
|
// limit update rate to maximum allowed by sensor buffers and fusion process
|
|
// don't try to write to buffer until the filter has been initialised
|
|
if (((timeStamp_ms - bodyOdmMeasTime_ms) < frontend->sensorIntervalMin_ms) || (delTime < dtEkfAvg) || !statesInitialised) {
|
|
return;
|
|
}
|
|
|
|
// subtract delay from timestamp
|
|
timeStamp_ms -= delay_ms;
|
|
|
|
bodyOdmDataNew.body_offset = posOffset.toftype();
|
|
bodyOdmDataNew.vel = delPos.toftype() * (1.0/delTime);
|
|
bodyOdmDataNew.time_ms = timeStamp_ms;
|
|
bodyOdmDataNew.angRate = (delAng * (1.0/delTime)).toftype();
|
|
bodyOdmMeasTime_ms = timeStamp_ms;
|
|
|
|
// simple model of accuracy
|
|
// TODO move this calculation outside of EKF into the sensor driver
|
|
bodyOdmDataNew.velErr = frontend->_visOdmVelErrMin + (frontend->_visOdmVelErrMax - frontend->_visOdmVelErrMin) * (1.0f - 0.01f * quality);
|
|
|
|
storedBodyOdm.push(bodyOdmDataNew);
|
|
#endif // EK3_FEATURE_BODY_ODOM
|
|
}
|
|
|
|
void NavEKF3_core::writeWheelOdom(float delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset, float radius)
|
|
{
|
|
#if EK3_FEATURE_BODY_ODOM
|
|
// This is a simple hack to get wheel encoder data into the EKF and verify the interface sign conventions and units
|
|
// It uses the exisiting body frame velocity fusion.
|
|
// TODO implement a dedicated wheel odometry observation model
|
|
|
|
// rate limiting to 50hz should be done by the caller
|
|
// limit update rate to maximum allowed by sensor buffers and fusion process
|
|
// don't try to write to buffer until the filter has been initialised
|
|
if ((delTime < dtEkfAvg) || !statesInitialised) {
|
|
return;
|
|
}
|
|
|
|
wheel_odm_elements wheelOdmDataNew = {};
|
|
wheelOdmDataNew.hub_offset = posOffset.toftype();
|
|
wheelOdmDataNew.delAng = delAng;
|
|
wheelOdmDataNew.radius = radius;
|
|
wheelOdmDataNew.delTime = delTime;
|
|
|
|
// because we are currently converting to an equivalent velocity measurement before fusing
|
|
// the measurement time is moved back to the middle of the sampling period
|
|
wheelOdmDataNew.time_ms = timeStamp_ms - (uint32_t)(500.0f * delTime);
|
|
|
|
storedWheelOdm.push(wheelOdmDataNew);
|
|
#endif // EK3_FEATURE_BODY_ODOM
|
|
}
|
|
|
|
// write the raw optical flow measurements
|
|
// this needs to be called externally.
|
|
void NavEKF3_core::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset, float heightOverride)
|
|
{
|
|
// limit update rate to maximum allowed by sensor buffers
|
|
if ((imuSampleTime_ms - flowMeaTime_ms) < frontend->sensorIntervalMin_ms) {
|
|
return;
|
|
}
|
|
|
|
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
|
|
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
|
|
// A positive X rate is produced by a positive sensor rotation about the X axis
|
|
// A positive Y rate is produced by a positive sensor rotation about the Y axis
|
|
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
|
|
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
|
|
flowMeaTime_ms = imuSampleTime_ms;
|
|
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
|
|
// reset the accumulated body delta angle and time
|
|
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
|
|
if (delTimeOF > 0.01f) {
|
|
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_ftype((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
|
|
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_ftype((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
|
|
delAngBodyOF.zero();
|
|
delTimeOF = 0.0f;
|
|
}
|
|
// by definition if this function is called, then flow measurements have been provided so we
|
|
// need to run the optical flow takeoff detection
|
|
detectOptFlowTakeoff();
|
|
|
|
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
|
|
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
|
|
// correct flow sensor body rates for bias and write
|
|
of_elements ofDataNew {};
|
|
ofDataNew.bodyRadXYZ.x = rawGyroRates.x - flowGyroBias.x;
|
|
ofDataNew.bodyRadXYZ.y = rawGyroRates.y - flowGyroBias.y;
|
|
// the sensor interface doesn't provide a z axis rate so use the rate from the nav sensor instead
|
|
if (delTimeOF > 0.001f) {
|
|
// first preference is to use the rate averaged over the same sampling period as the flow sensor
|
|
ofDataNew.bodyRadXYZ.z = delAngBodyOF.z / delTimeOF;
|
|
} else if (imuDataNew.delAngDT > 0.001f){
|
|
// second preference is to use most recent IMU data
|
|
ofDataNew.bodyRadXYZ.z = imuDataNew.delAng.z / imuDataNew.delAngDT;
|
|
} else {
|
|
// third preference is use zero
|
|
ofDataNew.bodyRadXYZ.z = 0.0f;
|
|
}
|
|
// write uncorrected flow rate measurements
|
|
// note correction for different axis and sign conventions used by the px4flow sensor
|
|
ofDataNew.flowRadXY = - rawFlowRates.toftype(); // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
|
|
// write the flow sensor position in body frame
|
|
ofDataNew.body_offset = posOffset.toftype();
|
|
// write the flow sensor height override
|
|
ofDataNew.heightOverride = heightOverride;
|
|
// write flow rate measurements corrected for body rates
|
|
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + ofDataNew.bodyRadXYZ.x;
|
|
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + ofDataNew.bodyRadXYZ.y;
|
|
// record time last observation was received so we can detect loss of data elsewhere
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
// estimate sample time of the measurement
|
|
ofDataNew.time_ms = imuSampleTime_ms - frontend->_flowDelay_ms - frontend->flowTimeDeltaAvg_ms/2;
|
|
// Correct for the average intersampling delay due to the filter updaterate
|
|
ofDataNew.time_ms -= localFilterTimeStep_ms/2;
|
|
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
|
ofDataNew.time_ms = MAX(ofDataNew.time_ms,imuDataDelayed.time_ms);
|
|
// Save data to buffer
|
|
storedOF.push(ofDataNew);
|
|
}
|
|
}
|
|
|
|
|
|
/********************************************************
|
|
* MAGNETOMETER *
|
|
********************************************************/
|
|
|
|
// try changing compass, return true if a new compass is found
|
|
void NavEKF3_core::tryChangeCompass(void)
|
|
{
|
|
const auto &compass = dal.compass();
|
|
const uint8_t maxCount = compass.get_count();
|
|
|
|
// search through the list of magnetometers
|
|
for (uint8_t i=1; i<maxCount; i++) {
|
|
uint8_t tempIndex = magSelectIndex + i;
|
|
// loop back to the start index if we have exceeded the bounds
|
|
if (tempIndex >= maxCount) {
|
|
tempIndex -= maxCount;
|
|
}
|
|
// if the magnetometer is allowed to be used for yaw and has a different index, we start using it
|
|
if (compass.healthy(tempIndex) && compass.use_for_yaw(tempIndex) && tempIndex != magSelectIndex) {
|
|
magSelectIndex = tempIndex;
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u switching to compass %u",(unsigned)imu_index,magSelectIndex);
|
|
// reset the timeout flag and timer
|
|
magTimeout = false;
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
// zero the learned magnetometer bias states
|
|
stateStruct.body_magfield.zero();
|
|
// clear the measurement buffer
|
|
storedMag.reset();
|
|
// clear the data waiting flag so that we do not use any data pending from the previous sensor
|
|
magDataToFuse = false;
|
|
// request a reset of the magnetic field states
|
|
magStateResetRequest = true;
|
|
// declare the field unlearned so that the reset request will be obeyed
|
|
magFieldLearned = false;
|
|
// reset body mag variances on next CovariancePrediction
|
|
needMagBodyVarReset = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check for new magnetometer data and update store measurements if available
|
|
void NavEKF3_core::readMagData()
|
|
{
|
|
const auto &compass = dal.compass();
|
|
|
|
if (!compass.available()) {
|
|
allMagSensorsFailed = true;
|
|
return;
|
|
}
|
|
|
|
// If we are a vehicle with a sideslip constraint to aid yaw estimation and we have timed out on our last avialable
|
|
// magnetometer, then declare the magnetometers as failed for this flight
|
|
const uint8_t maxCount = compass.get_count();
|
|
if (allMagSensorsFailed || (magTimeout && assume_zero_sideslip() && magSelectIndex >= maxCount-1 && inFlight)) {
|
|
allMagSensorsFailed = true;
|
|
return;
|
|
}
|
|
|
|
if (compass.learn_offsets_enabled()) {
|
|
wasLearningCompass_ms = imuSampleTime_ms;
|
|
} else if (wasLearningCompass_ms != 0 && imuSampleTime_ms - wasLearningCompass_ms > 1000) {
|
|
// allow time for old data to clear the buffer before signalling other code that compass data can be used
|
|
wasLearningCompass_ms = 0;
|
|
}
|
|
|
|
// If the magnetometer has timed out (been rejected for too long), we find another magnetometer to use if available
|
|
// Don't do this if we are on the ground because there can be magnetic interference and we need to know if there is a problem
|
|
// before taking off. Don't do this within the first 30 seconds from startup because the yaw error could be due to large yaw gyro bias affsets
|
|
// if the timeout is due to a sensor failure, then declare a timeout regardless of onground status
|
|
if (maxCount > 1) {
|
|
bool fusionTimeout = magTimeout && !onGround && imuSampleTime_ms - ekfStartTime_ms > 30000 && !(frontend->_affinity & EKF_AFFINITY_MAG);
|
|
bool sensorTimeout = !compass.healthy(magSelectIndex) && imuSampleTime_ms - lastMagRead_ms > frontend->magFailTimeLimit_ms;
|
|
if (fusionTimeout || sensorTimeout) {
|
|
tryChangeCompass();
|
|
}
|
|
}
|
|
|
|
// limit compass update rate to prevent high processor loading because magnetometer fusion is an expensive step and we could overflow the FIFO buffer
|
|
if (use_compass() &&
|
|
compass.healthy(magSelectIndex) &&
|
|
((compass.last_update_usec(magSelectIndex) - lastMagUpdate_us) > 1000 * frontend->sensorIntervalMin_ms)) {
|
|
|
|
// detect changes to magnetometer offset parameters and reset states
|
|
Vector3F nowMagOffsets = compass.get_offsets(magSelectIndex).toftype();
|
|
bool changeDetected = lastMagOffsetsValid && (nowMagOffsets != lastMagOffsets);
|
|
if (changeDetected) {
|
|
// zero the learned magnetometer bias states
|
|
stateStruct.body_magfield.zero();
|
|
// clear the measurement buffer
|
|
storedMag.reset();
|
|
|
|
// reset body mag variances on next
|
|
// CovariancePrediction. This copes with possible errors
|
|
// in the new offsets
|
|
needMagBodyVarReset = true;
|
|
}
|
|
lastMagOffsets = nowMagOffsets;
|
|
lastMagOffsetsValid = true;
|
|
|
|
// store time of last measurement update
|
|
lastMagUpdate_us = compass.last_update_usec(magSelectIndex);
|
|
|
|
// Magnetometer data at the current time horizon
|
|
mag_elements magDataNew;
|
|
|
|
// estimate of time magnetometer measurement was taken, allowing for delays
|
|
magDataNew.time_ms = imuSampleTime_ms - frontend->magDelay_ms;
|
|
|
|
// Correct for the average intersampling delay due to the filter updaterate
|
|
magDataNew.time_ms -= localFilterTimeStep_ms/2;
|
|
|
|
// read compass data and scale to improve numerical conditioning
|
|
magDataNew.mag = (compass.get_field(magSelectIndex) * 0.001f).toftype();
|
|
|
|
// check for consistent data between magnetometers
|
|
consistentMagData = compass.consistent();
|
|
|
|
// save magnetometer measurement to buffer to be fused later
|
|
storedMag.push(magDataNew);
|
|
|
|
// remember time we read compass, to detect compass sensor failure
|
|
lastMagRead_ms = imuSampleTime_ms;
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* Inertial Measurements *
|
|
********************************************************/
|
|
|
|
/*
|
|
* Read IMU delta angle and delta velocity measurements and downsample to 100Hz
|
|
* for storage in the data buffers used by the EKF. If the IMU data arrives at
|
|
* lower rate than 100Hz, then no downsampling or upsampling will be performed.
|
|
* Downsampling is done using a method that does not introduce coning or sculling
|
|
* errors.
|
|
*/
|
|
void NavEKF3_core::readIMUData(bool startPredictEnabled)
|
|
{
|
|
const auto &ins = dal.ins();
|
|
|
|
// calculate an averaged IMU update rate using a spike and lowpass filter combination
|
|
dtIMUavg = 0.02f * constrain_ftype(ins.get_loop_delta_t(),0.5f * dtIMUavg, 2.0f * dtIMUavg) + 0.98f * dtIMUavg;
|
|
|
|
// the imu sample time is used as a common time reference throughout the filter
|
|
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
|
|
|
|
uint8_t accel_active, gyro_active;
|
|
|
|
if (ins.use_accel(imu_index)) {
|
|
accel_active = imu_index;
|
|
} else {
|
|
accel_active = ins.get_first_usable_accel();
|
|
}
|
|
|
|
if (ins.use_gyro(imu_index)) {
|
|
gyro_active = imu_index;
|
|
} else {
|
|
gyro_active = ins.get_first_usable_gyro();
|
|
}
|
|
|
|
if (gyro_active != gyro_index_active) {
|
|
// we are switching active gyro at runtime. Copy over the
|
|
// bias we have learned from the previously inactive
|
|
// gyro. We don't re-init the bias uncertainty as it should
|
|
// have the same uncertainty as the previously active gyro
|
|
stateStruct.gyro_bias = inactiveBias[gyro_active].gyro_bias;
|
|
gyro_index_active = gyro_active;
|
|
}
|
|
|
|
if (accel_active != accel_index_active) {
|
|
// switch to the learned accel bias for this IMU
|
|
stateStruct.accel_bias = inactiveBias[accel_active].accel_bias;
|
|
accel_index_active = accel_active;
|
|
}
|
|
|
|
// update the inactive bias states
|
|
learnInactiveBiases();
|
|
|
|
// run movement check using IMU data
|
|
updateMovementCheck();
|
|
|
|
readDeltaVelocity(accel_index_active, imuDataNew.delVel, imuDataNew.delVelDT);
|
|
accelPosOffset = ins.get_imu_pos_offset(accel_index_active).toftype();
|
|
imuDataNew.accel_index = accel_index_active;
|
|
|
|
// Get delta angle data from primary gyro or primary if not available
|
|
readDeltaAngle(gyro_index_active, imuDataNew.delAng, imuDataNew.delAngDT);
|
|
imuDataNew.delAngDT = MAX(imuDataNew.delAngDT, 1.0e-4f);
|
|
imuDataNew.gyro_index = gyro_index_active;
|
|
|
|
// Get current time stamp
|
|
imuDataNew.time_ms = imuSampleTime_ms;
|
|
|
|
// Accumulate the measurement time interval for the delta velocity and angle data
|
|
imuDataDownSampledNew.delAngDT += imuDataNew.delAngDT;
|
|
imuDataDownSampledNew.delVelDT += imuDataNew.delVelDT;
|
|
|
|
// use the most recent IMU index for the downsampled IMU
|
|
// data. This isn't strictly correct if we switch IMUs between
|
|
// samples
|
|
imuDataDownSampledNew.gyro_index = imuDataNew.gyro_index;
|
|
imuDataDownSampledNew.accel_index = imuDataNew.accel_index;
|
|
|
|
// Rotate quaternon atitude from previous to new and normalise.
|
|
// Accumulation using quaternions prevents introduction of coning errors due to downsampling
|
|
imuQuatDownSampleNew.rotate(imuDataNew.delAng);
|
|
imuQuatDownSampleNew.normalize();
|
|
|
|
// Rotate the latest delta velocity into body frame at the start of accumulation
|
|
Matrix3F deltaRotMat;
|
|
imuQuatDownSampleNew.rotation_matrix(deltaRotMat);
|
|
|
|
// Apply the delta velocity to the delta velocity accumulator
|
|
imuDataDownSampledNew.delVel += deltaRotMat*imuDataNew.delVel;
|
|
|
|
// Keep track of the number of IMU frames since the last state prediction
|
|
framesSincePredict++;
|
|
|
|
/*
|
|
* If the target EKF time step has been accumulated, and the frontend has allowed start of a new predict cycle,
|
|
* then store the accumulated IMU data to be used by the state prediction, ignoring the frontend permission if more
|
|
* than twice the target time has lapsed. Adjust the target EKF step time threshold to allow for timing jitter in the
|
|
* IMU data.
|
|
*/
|
|
if ((imuDataDownSampledNew.delAngDT >= (EKF_TARGET_DT-(dtIMUavg*0.5f)) && startPredictEnabled) ||
|
|
(imuDataDownSampledNew.delAngDT >= 2.0f*EKF_TARGET_DT)) {
|
|
|
|
// convert the accumulated quaternion to an equivalent delta angle
|
|
imuQuatDownSampleNew.to_axis_angle(imuDataDownSampledNew.delAng);
|
|
|
|
// Time stamp the data
|
|
imuDataDownSampledNew.time_ms = imuSampleTime_ms;
|
|
|
|
// Write data to the FIFO IMU buffer
|
|
storedIMU.push_youngest_element(imuDataDownSampledNew);
|
|
|
|
// calculate the achieved average time step rate for the EKF using a combination spike and LPF
|
|
ftype dtNow = constrain_ftype(0.5f*(imuDataDownSampledNew.delAngDT+imuDataDownSampledNew.delVelDT),0.5f * dtEkfAvg, 2.0f * dtEkfAvg);
|
|
dtEkfAvg = 0.98f * dtEkfAvg + 0.02f * dtNow;
|
|
|
|
// do an addtional down sampling for data used to sample XY body frame drag specific forces
|
|
SampleDragData(imuDataDownSampledNew);
|
|
|
|
// zero the accumulated IMU data and quaternion
|
|
imuDataDownSampledNew.delAng.zero();
|
|
imuDataDownSampledNew.delVel.zero();
|
|
imuDataDownSampledNew.delAngDT = 0.0f;
|
|
imuDataDownSampledNew.delVelDT = 0.0f;
|
|
imuQuatDownSampleNew[0] = 1.0f;
|
|
imuQuatDownSampleNew[3] = imuQuatDownSampleNew[2] = imuQuatDownSampleNew[1] = 0.0f;
|
|
|
|
// reset the counter used to let the frontend know how many frames have elapsed since we started a new update cycle
|
|
framesSincePredict = 0;
|
|
|
|
// set the flag to let the filter know it has new IMU data and needs to run
|
|
runUpdates = true;
|
|
|
|
// extract the oldest available data from the FIFO buffer
|
|
imuDataDelayed = storedIMU.get_oldest_element();
|
|
|
|
// protect against delta time going to zero
|
|
ftype minDT = 0.1f * dtEkfAvg;
|
|
imuDataDelayed.delAngDT = MAX(imuDataDelayed.delAngDT,minDT);
|
|
imuDataDelayed.delVelDT = MAX(imuDataDelayed.delVelDT,minDT);
|
|
|
|
updateTimingStatistics();
|
|
|
|
// correct the extracted IMU data for sensor errors
|
|
delAngCorrected = imuDataDelayed.delAng;
|
|
delVelCorrected = imuDataDelayed.delVel;
|
|
correctDeltaAngle(delAngCorrected, imuDataDelayed.delAngDT, imuDataDelayed.gyro_index);
|
|
correctDeltaVelocity(delVelCorrected, imuDataDelayed.delVelDT, imuDataDelayed.accel_index);
|
|
|
|
} else {
|
|
// we don't have new IMU data in the buffer so don't run filter updates on this time step
|
|
runUpdates = false;
|
|
}
|
|
}
|
|
|
|
// read the delta velocity and corresponding time interval from the IMU
|
|
// return false if data is not available
|
|
bool NavEKF3_core::readDeltaVelocity(uint8_t ins_index, Vector3F &dVel, ftype &dVel_dt) {
|
|
const auto &ins = dal.ins();
|
|
|
|
if (ins_index < ins.get_accel_count()) {
|
|
Vector3f dVelF;
|
|
float dVel_dtF;
|
|
ins.get_delta_velocity(ins_index, dVelF, dVel_dtF);
|
|
dVel = dVelF.toftype();
|
|
dVel_dt = dVel_dtF;
|
|
dVel_dt = MAX(dVel_dt,1.0e-4);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/********************************************************
|
|
* Global Position Measurement *
|
|
********************************************************/
|
|
|
|
// check for new valid GPS data and update stored measurement if available
|
|
void NavEKF3_core::readGpsData()
|
|
{
|
|
// check for new GPS data
|
|
const auto &gps = dal.gps();
|
|
|
|
// limit update rate to avoid overflowing the FIFO buffer
|
|
if (gps.last_message_time_ms(selected_gps) - lastTimeGpsReceived_ms <= frontend->sensorIntervalMin_ms) {
|
|
return;
|
|
}
|
|
|
|
if (gps.status(selected_gps) < AP_DAL_GPS::GPS_OK_FIX_3D) {
|
|
// report GPS fix status
|
|
gpsCheckStatus.bad_fix = true;
|
|
dal.snprintf(prearm_fail_string, sizeof(prearm_fail_string), "Waiting for 3D fix");
|
|
return;
|
|
}
|
|
|
|
// report GPS fix status
|
|
gpsCheckStatus.bad_fix = false;
|
|
|
|
// store fix time from previous read
|
|
const uint32_t secondLastGpsTime_ms = lastTimeGpsReceived_ms;
|
|
|
|
// get current fix time
|
|
lastTimeGpsReceived_ms = gps.last_message_time_ms(selected_gps);
|
|
|
|
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
|
|
// ideally we should be using a timing signal from the GPS receiver to set this time
|
|
// Use the driver specified delay
|
|
float gps_delay_sec = 0;
|
|
gps.get_lag(selected_gps, gps_delay_sec);
|
|
gpsDataNew.time_ms = lastTimeGpsReceived_ms - (uint32_t)(gps_delay_sec * 1000.0f);
|
|
|
|
// Correct for the average intersampling delay due to the filter updaterate
|
|
gpsDataNew.time_ms -= localFilterTimeStep_ms/2;
|
|
|
|
// Prevent the time stamp falling outside the oldest and newest IMU data in the buffer
|
|
gpsDataNew.time_ms = MIN(MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms),imuDataDownSampledNew.time_ms);
|
|
|
|
// Get which GPS we are using for position information
|
|
gpsDataNew.sensor_idx = selected_gps;
|
|
|
|
// read the NED velocity from the GPS
|
|
gpsDataNew.vel = gps.velocity(selected_gps).toftype();
|
|
gpsDataNew.have_vz = gps.have_vertical_velocity(selected_gps);
|
|
|
|
// position and velocity are not yet corrected for sensor position
|
|
gpsDataNew.corrected = false;
|
|
|
|
// Use the speed and position accuracy from the GPS if available, otherwise set it to zero.
|
|
// Apply a decaying envelope filter with a 5 second time constant to the raw accuracy data
|
|
ftype alpha = constrain_ftype(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
|
|
gpsSpdAccuracy *= (1.0f - alpha);
|
|
float gpsSpdAccRaw;
|
|
if (!gps.speed_accuracy(selected_gps, gpsSpdAccRaw)) {
|
|
gpsSpdAccuracy = 0.0f;
|
|
} else {
|
|
gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw);
|
|
gpsSpdAccuracy = MIN(gpsSpdAccuracy,50.0f);
|
|
gpsSpdAccuracy = MAX(gpsSpdAccuracy,frontend->_gpsHorizVelNoise);
|
|
}
|
|
gpsPosAccuracy *= (1.0f - alpha);
|
|
float gpsPosAccRaw;
|
|
if (!gps.horizontal_accuracy(selected_gps, gpsPosAccRaw)) {
|
|
gpsPosAccuracy = 0.0f;
|
|
} else {
|
|
gpsPosAccuracy = MAX(gpsPosAccuracy,gpsPosAccRaw);
|
|
gpsPosAccuracy = MIN(gpsPosAccuracy,100.0f);
|
|
gpsPosAccuracy = MAX(gpsPosAccuracy, frontend->_gpsHorizPosNoise);
|
|
}
|
|
gpsHgtAccuracy *= (1.0f - alpha);
|
|
float gpsHgtAccRaw;
|
|
if (!gps.vertical_accuracy(selected_gps, gpsHgtAccRaw)) {
|
|
gpsHgtAccuracy = 0.0f;
|
|
} else {
|
|
gpsHgtAccuracy = MAX(gpsHgtAccuracy,gpsHgtAccRaw);
|
|
gpsHgtAccuracy = MIN(gpsHgtAccuracy,100.0f);
|
|
gpsHgtAccuracy = MAX(gpsHgtAccuracy, 1.5f * frontend->_gpsHorizPosNoise);
|
|
}
|
|
|
|
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
|
|
if (gps.num_sats(selected_gps) >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
|
|
gpsNoiseScaler = 1.0f;
|
|
} else if (gps.num_sats(selected_gps) == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
|
|
gpsNoiseScaler = 1.4f;
|
|
} else { // <= 4 satellites or in constant position mode
|
|
gpsNoiseScaler = 2.0f;
|
|
}
|
|
|
|
// Check if GPS can output vertical velocity, vertical velocity use is permitted and set GPS fusion mode accordingly
|
|
if (gpsDataNew.have_vz && frontend->sources.useVelZSource(AP_NavEKF_Source::SourceZ::GPS)) {
|
|
useGpsVertVel = true;
|
|
} else {
|
|
useGpsVertVel = false;
|
|
}
|
|
|
|
if ((frontend->_options & (int32_t)NavEKF3::Options::JammingExpected) &&
|
|
(lastTimeGpsReceived_ms - secondLastGpsTime_ms) > frontend->gpsNoFixTimeout_ms) {
|
|
const bool doingBodyVelNav = (imuSampleTime_ms - prevBodyVelFuseTime_ms < 1000);
|
|
const bool doingFlowNav = (imuSampleTime_ms - prevFlowFuseTime_ms < 1000);;
|
|
const bool canDoWindRelNav = assume_zero_sideslip();
|
|
const bool canDeadReckon = ((doingFlowNav && gndOffsetValid) || canDoWindRelNav || doingBodyVelNav);
|
|
if (canDeadReckon) {
|
|
// If we can do dead reckoning with a data source other than GPS there is time to wait
|
|
// for GPS alignment checks to pass before using GPS inside the EKF.
|
|
// this gets set back to false in calcGpsGoodToAlign() when GPS checks pass
|
|
waitingForGpsChecks = true;
|
|
// force GPS checks to restart
|
|
lastPreAlignGpsCheckTime_ms = 0;
|
|
lastGpsVelFail_ms = imuSampleTime_ms;
|
|
lastGpsVelPass_ms = 0;
|
|
gpsGoodToAlign = false;
|
|
} else {
|
|
waitingForGpsChecks = false;
|
|
}
|
|
}
|
|
|
|
// Monitor quality of the GPS velocity data before and after alignment
|
|
calcGpsGoodToAlign();
|
|
|
|
// Post-alignment checks
|
|
calcGpsGoodForFlight();
|
|
|
|
// Read the GPS location in WGS-84 lat,long,height coordinates
|
|
const Location &gpsloc = gps.location(selected_gps);
|
|
|
|
// Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed
|
|
if (gpsGoodToAlign && !validOrigin) {
|
|
Location gpsloc_fieldelevation = gpsloc;
|
|
// if flying, correct for height change from takeoff so that the origin is at field elevation
|
|
if (inFlight) {
|
|
gpsloc_fieldelevation.alt += (int32_t)(100.0f * stateStruct.position.z);
|
|
}
|
|
|
|
if (!setOrigin(gpsloc_fieldelevation)) {
|
|
// set an error as an attempt was made to set the origin more than once
|
|
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
|
|
return;
|
|
}
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
// Set the height of the NED origin
|
|
ekfGpsRefHgt = (double)0.01 * (double)gpsloc.alt + (double)outputDataNew.position.z;
|
|
|
|
// Set the uncertainty of the GPS origin height
|
|
ekfOriginHgtVar = sq(gpsHgtAccuracy);
|
|
|
|
}
|
|
|
|
if (gpsGoodToAlign && !have_table_earth_field) {
|
|
setEarthFieldFromLocation(gpsloc);
|
|
}
|
|
|
|
// convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin
|
|
// and are not waiting for GPs checks to pass
|
|
if (validOrigin && !waitingForGpsChecks) {
|
|
gpsDataNew.lat = gpsloc.lat;
|
|
gpsDataNew.lng = gpsloc.lng;
|
|
if ((frontend->_originHgtMode & (1<<2)) == 0) {
|
|
// the height adjustment to match GPS is being achieved by adjusting the origin height
|
|
gpsDataNew.hgt = (ftype)((double)0.01 * (double)gpsloc.alt - ekfGpsRefHgt);
|
|
} else {
|
|
// the height adjustment to match GPS is being achieved by adjusting the measurements
|
|
gpsDataNew.hgt = 0.01 * (gpsloc.alt - EKF_origin.alt);
|
|
}
|
|
storedGPS.push(gpsDataNew);
|
|
// declare GPS in use
|
|
gpsIsInUse = true;
|
|
}
|
|
}
|
|
|
|
// check for new valid GPS yaw data
|
|
void NavEKF3_core::readGpsYawData()
|
|
{
|
|
const auto &gps = dal.gps();
|
|
|
|
// if the GPS has yaw data then fuse it as an Euler yaw angle
|
|
float yaw_deg, yaw_accuracy_deg;
|
|
uint32_t yaw_time_ms;
|
|
if (gps.status(selected_gps) >= AP_DAL_GPS::GPS_OK_FIX_3D &&
|
|
dal.gps().gps_yaw_deg(selected_gps, yaw_deg, yaw_accuracy_deg, yaw_time_ms) &&
|
|
yaw_time_ms != yawMeasTime_ms) {
|
|
// GPS modules are rather too optimistic about their
|
|
// accuracy. Set to min of 5 degrees here to prevent
|
|
// the user constantly receiving warnings about high
|
|
// normalised yaw innovations
|
|
const ftype min_yaw_accuracy_deg = 5.0f;
|
|
yaw_accuracy_deg = MAX(yaw_accuracy_deg, min_yaw_accuracy_deg);
|
|
writeEulerYawAngle(radians(yaw_deg), radians(yaw_accuracy_deg), yaw_time_ms, 2);
|
|
}
|
|
}
|
|
|
|
// read the delta angle and corresponding time interval from the IMU
|
|
// return false if data is not available
|
|
bool NavEKF3_core::readDeltaAngle(uint8_t ins_index, Vector3F &dAng, ftype &dAngDT) {
|
|
const auto &ins = dal.ins();
|
|
|
|
if (ins_index < ins.get_gyro_count()) {
|
|
Vector3f dAngF;
|
|
float dAngDTF;
|
|
ins.get_delta_angle(ins_index, dAngF, dAngDTF);
|
|
dAng = dAngF.toftype();
|
|
dAngDT = dAngDTF;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/********************************************************
|
|
* Height Measurements *
|
|
********************************************************/
|
|
|
|
// check for new pressure altitude measurement data and update stored measurement if available
|
|
void NavEKF3_core::readBaroData()
|
|
{
|
|
// check to see if baro measurement has changed so we know if a new measurement has arrived
|
|
// limit update rate to avoid overflowing the FIFO buffer
|
|
const auto &baro = dal.baro();
|
|
if (baro.get_last_update(selected_baro) - lastBaroReceived_ms > frontend->sensorIntervalMin_ms) {
|
|
|
|
baroDataNew.hgt = baro.get_altitude(selected_baro);
|
|
|
|
// time stamp used to check for new measurement
|
|
lastBaroReceived_ms = baro.get_last_update(selected_baro);
|
|
|
|
// estimate of time height measurement was taken, allowing for delays
|
|
baroDataNew.time_ms = lastBaroReceived_ms - frontend->_hgtDelay_ms;
|
|
|
|
// Correct for the average intersampling delay due to the filter updaterate
|
|
baroDataNew.time_ms -= localFilterTimeStep_ms/2;
|
|
|
|
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
|
baroDataNew.time_ms = MAX(baroDataNew.time_ms,imuDataDelayed.time_ms);
|
|
|
|
// save baro measurement to buffer to be fused later
|
|
storedBaro.push(baroDataNew);
|
|
}
|
|
}
|
|
|
|
// calculate filtered offset between baro height measurement and EKF height estimate
|
|
// offset should be subtracted from baro measurement to match filter estimate
|
|
// offset is used to enable reversion to baro from alternate height data source
|
|
void NavEKF3_core::calcFiltBaroOffset()
|
|
{
|
|
// Apply a first order LPF with spike protection
|
|
baroHgtOffset += 0.1f * constrain_ftype(baroDataDelayed.hgt + stateStruct.position.z - baroHgtOffset, -5.0f, 5.0f);
|
|
}
|
|
|
|
// correct the height of the EKF origin to be consistent with GPS Data using a Bayes filter.
|
|
void NavEKF3_core::correctEkfOriginHeight()
|
|
{
|
|
// Estimate the WGS-84 height of the EKF's origin using a Bayes filter
|
|
|
|
// calculate the variance of our a-priori estimate of the ekf origin height
|
|
ftype deltaTime = constrain_ftype(0.001f * (imuDataDelayed.time_ms - lastOriginHgtTime_ms), 0.0, 1.0);
|
|
if (activeHgtSource == AP_NavEKF_Source::SourceZ::BARO) {
|
|
// Use the baro drift rate
|
|
const ftype baroDriftRate = 0.05;
|
|
ekfOriginHgtVar += sq(baroDriftRate * deltaTime);
|
|
} else if (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER) {
|
|
// use the worse case expected terrain gradient and vehicle horizontal speed
|
|
const ftype maxTerrGrad = 0.25;
|
|
ekfOriginHgtVar += sq(maxTerrGrad * stateStruct.velocity.xy().length() * deltaTime);
|
|
} else {
|
|
// by definition our height source is absolute so cannot run this filter
|
|
return;
|
|
}
|
|
lastOriginHgtTime_ms = imuDataDelayed.time_ms;
|
|
|
|
// calculate the observation variance assuming EKF error relative to datum is independent of GPS observation error
|
|
// when not using GPS as height source
|
|
ftype originHgtObsVar = sq(gpsHgtAccuracy) + P[9][9];
|
|
|
|
// calculate the correction gain
|
|
ftype gain = ekfOriginHgtVar / (ekfOriginHgtVar + originHgtObsVar);
|
|
|
|
// calculate the innovation
|
|
ftype innovation = - stateStruct.position.z - gpsDataDelayed.hgt;
|
|
|
|
// check the innovation variance ratio
|
|
ftype ratio = sq(innovation) / (ekfOriginHgtVar + originHgtObsVar);
|
|
|
|
// correct the EKF origin and variance estimate if the innovation is less than 5-sigma
|
|
if (ratio < 25.0f && gpsAccuracyGood) {
|
|
ekfGpsRefHgt -= (double)(gain * innovation);
|
|
ekfOriginHgtVar -= MAX(gain * ekfOriginHgtVar , 0.0f);
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* Air Speed Measurements *
|
|
********************************************************/
|
|
|
|
// check for new airspeed data and update stored measurements if available
|
|
void NavEKF3_core::readAirSpdData()
|
|
{
|
|
const float EAS2TAS = dal.get_EAS2TAS();
|
|
// if airspeed reading is valid and is set by the user to be used and has been updated then
|
|
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
|
|
// know a new measurement is available
|
|
|
|
if (useAirspeed()) {
|
|
const auto *airspeed = dal.airspeed();
|
|
if (airspeed &&
|
|
(airspeed->last_update_ms(selected_airspeed) - timeTasReceived_ms) > frontend->sensorIntervalMin_ms) {
|
|
tasDataNew.allowFusion = airspeed->healthy(selected_airspeed) && airspeed->use(selected_airspeed);
|
|
if (tasDataNew.allowFusion) {
|
|
tasDataNew.tas = airspeed->get_airspeed(selected_airspeed) * EAS2TAS;
|
|
timeTasReceived_ms = airspeed->last_update_ms(selected_airspeed);
|
|
tasDataNew.time_ms = timeTasReceived_ms - frontend->tasDelay_ms;
|
|
tasDataNew.tasVariance = sq(MAX(frontend->_easNoise * EAS2TAS, 0.5f));
|
|
// Correct for the average intersampling delay due to the filter update rate
|
|
tasDataNew.time_ms -= localFilterTimeStep_ms/2;
|
|
// Save data into the buffer to be fused when the fusion time horizon catches up with it
|
|
storedTAS.push(tasDataNew);
|
|
}
|
|
}
|
|
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused
|
|
tasDataToFuse = storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms);
|
|
} else {
|
|
if (is_positive(defaultAirSpeed)) {
|
|
// this is the preferred method with the autopilot providing a model based airspeed estimate
|
|
if (imuDataDelayed.time_ms - prevTasStep_ms > 200 ) {
|
|
tasDataDelayed.tas = defaultAirSpeed * EAS2TAS;
|
|
tasDataDelayed.tasVariance = MAX(defaultAirSpeedVariance, sq(MAX(frontend->_easNoise, 0.5f)));
|
|
tasDataToFuse = true;
|
|
tasDataDelayed.allowFusion = true;
|
|
tasDataDelayed.time_ms = imuDataDelayed.time_ms;
|
|
} else {
|
|
tasDataToFuse = false;
|
|
tasDataDelayed.allowFusion = false;
|
|
}
|
|
} else if (lastAspdEstIsValid && !windStateIsObservable) {
|
|
// this uses the last airspeed estimated before dead reckoning started and
|
|
// wind states became unobservable
|
|
if (lastAspdEstIsValid && imuDataDelayed.time_ms - prevTasStep_ms > 200) {
|
|
tasDataDelayed.tas = lastAirspeedEstimate;
|
|
// this airspeed estimate has a lot of uncertainty
|
|
tasDataDelayed.tasVariance = sq(MAX(MAX(frontend->_easNoise, 0.5f), 0.5f * lastAirspeedEstimate));
|
|
tasDataToFuse = true;
|
|
tasDataDelayed.allowFusion = true;
|
|
tasDataDelayed.time_ms = imuDataDelayed.time_ms;
|
|
} else {
|
|
tasDataToFuse = false;
|
|
tasDataDelayed.allowFusion = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if EK3_FEATURE_BEACON_FUSION
|
|
/********************************************************
|
|
* Range Beacon Measurements *
|
|
********************************************************/
|
|
|
|
// check for new range beacon data and push to data buffer if available
|
|
void NavEKF3_core::readRngBcnData()
|
|
{
|
|
// check that arrays are large enough
|
|
static_assert(ARRAY_SIZE(rngBcn.lastTime_ms) >= AP_BEACON_MAX_BEACONS, "lastTimeRngBcn_ms should have at least AP_BEACON_MAX_BEACONS elements");
|
|
|
|
// get the location of the beacon data
|
|
const AP_DAL_Beacon *beacon = dal.beacon();
|
|
|
|
// exit immediately if no beacon object
|
|
if (beacon == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// get the number of beacons in use
|
|
rngBcn.N = MIN(beacon->count(), ARRAY_SIZE(rngBcn.lastTime_ms));
|
|
|
|
// search through all the beacons for new data and if we find it stop searching and push the data into the observation buffer
|
|
bool newDataPushed = false;
|
|
uint8_t numRngBcnsChecked = 0;
|
|
// start the search one index up from where we left it last time
|
|
uint8_t index = rngBcn.lastChecked;
|
|
while (!newDataPushed && (numRngBcnsChecked < rngBcn.N)) {
|
|
// track the number of beacons checked
|
|
numRngBcnsChecked++;
|
|
|
|
// move to next beacon, wrap index if necessary
|
|
index++;
|
|
if (index >= rngBcn.N) {
|
|
index = 0;
|
|
}
|
|
|
|
// check that the beacon is healthy and has new data
|
|
if (beacon->beacon_healthy(index) && beacon->beacon_last_update_ms(index) != rngBcn.lastTime_ms[index]) {
|
|
rng_bcn_elements rngBcnDataNew = {};
|
|
|
|
// set the timestamp, correcting for measurement delay and average intersampling delay due to the filter update rate
|
|
rngBcn.lastTime_ms[index] = beacon->beacon_last_update_ms(index);
|
|
rngBcnDataNew.time_ms = rngBcn.lastTime_ms[index] - frontend->_rngBcnDelay_ms - localFilterTimeStep_ms/2;
|
|
|
|
// set the range noise
|
|
// TODO the range library should provide the noise/accuracy estimate for each beacon
|
|
rngBcnDataNew.rngErr = frontend->_rngBcnNoise;
|
|
|
|
// set the range measurement
|
|
rngBcnDataNew.rng = beacon->beacon_distance(index);
|
|
|
|
// set the beacon position
|
|
rngBcnDataNew.beacon_posNED = beacon->beacon_position(index).toftype();
|
|
|
|
// identify the beacon identifier
|
|
rngBcnDataNew.beacon_ID = index;
|
|
|
|
// indicate we have new data to push to the buffer
|
|
newDataPushed = true;
|
|
|
|
// update the last checked index
|
|
rngBcn.lastChecked = index;
|
|
|
|
// Save data into the buffer to be fused when the fusion time horizon catches up with it
|
|
rngBcn.storedRange.push(rngBcnDataNew);
|
|
}
|
|
}
|
|
|
|
// Check if the beacon system has returned a 3D fix
|
|
Vector3f bp;
|
|
float bperr;
|
|
if (beacon->get_vehicle_position_ned(bp, bperr)) {
|
|
rngBcn.last3DmeasTime_ms = imuSampleTime_ms;
|
|
}
|
|
rngBcn.vehiclePosNED = bp.toftype();
|
|
rngBcn.vehiclePosErr = bperr;
|
|
|
|
// Check if the range beacon data can be used to align the vehicle position
|
|
if ((imuSampleTime_ms - rngBcn.last3DmeasTime_ms < 250) && (rngBcn.vehiclePosErr < 1.0f) && rngBcn.alignmentCompleted) {
|
|
// check for consistency between the position reported by the beacon and the position from the 3-State alignment filter
|
|
const ftype posDiffSq = sq(rngBcn.receiverPos.x - rngBcn.vehiclePosNED.x) + sq(rngBcn.receiverPos.y - rngBcn.vehiclePosNED.y);
|
|
const ftype posDiffVar = sq(rngBcn.vehiclePosErr) + rngBcn.receiverPosCov[0][0] + rngBcn.receiverPosCov[1][1];
|
|
if (posDiffSq < 9.0f * posDiffVar) {
|
|
rngBcn.goodToAlign = true;
|
|
// Set the EKF origin and magnetic field declination if not previously set
|
|
if (!validOrigin && (PV_AidingMode != AID_ABSOLUTE)) {
|
|
// get origin from beacon system
|
|
Location origin_loc;
|
|
if (beacon->get_origin(origin_loc)) {
|
|
setOriginLLH(origin_loc);
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
// Set the uncertainty of the origin height
|
|
ekfOriginHgtVar = sq(rngBcn.vehiclePosErr);
|
|
}
|
|
}
|
|
} else {
|
|
rngBcn.goodToAlign = false;
|
|
}
|
|
} else {
|
|
rngBcn.goodToAlign = false;
|
|
}
|
|
|
|
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused
|
|
rngBcn.dataToFuse = rngBcn.storedRange.recall(rngBcn.dataDelayed, imuDataDelayed.time_ms);
|
|
|
|
// Correct the range beacon earth frame origin for estimated offset relative to the EKF earth frame origin
|
|
if (rngBcn.dataToFuse) {
|
|
rngBcn.dataDelayed.beacon_posNED.x += rngBcn.posOffsetNED.x;
|
|
rngBcn.dataDelayed.beacon_posNED.y += rngBcn.posOffsetNED.y;
|
|
}
|
|
|
|
}
|
|
#endif // EK3_FEATURE_BEACON_FUSION
|
|
|
|
/********************************************************
|
|
* Independant yaw sensor measurements *
|
|
********************************************************/
|
|
|
|
void NavEKF3_core::writeEulerYawAngle(float yawAngle, float yawAngleErr, uint32_t timeStamp_ms, uint8_t type)
|
|
{
|
|
// limit update rate to maximum allowed by sensor buffers and fusion process
|
|
// don't try to write to buffer until the filter has been initialised
|
|
if (((timeStamp_ms - yawMeasTime_ms) < frontend->sensorIntervalMin_ms) || !statesInitialised) {
|
|
return;
|
|
}
|
|
|
|
yawAngDataNew.yawAng = yawAngle;
|
|
yawAngDataNew.yawAngErr = yawAngleErr;
|
|
if (type == 2) {
|
|
yawAngDataNew.order = rotationOrder::TAIT_BRYAN_321;
|
|
} else if (type == 1) {
|
|
yawAngDataNew.order = rotationOrder::TAIT_BRYAN_312;
|
|
} else {
|
|
return;
|
|
}
|
|
yawAngDataNew.time_ms = timeStamp_ms;
|
|
|
|
storedYawAng.push(yawAngDataNew);
|
|
|
|
yawMeasTime_ms = timeStamp_ms;
|
|
}
|
|
|
|
// Writes the default equivalent airspeed and 1-sigma uncertainty in m/s to be used in forward flight if a measured airspeed is required and not available.
|
|
void NavEKF3_core::writeDefaultAirSpeed(float airspeed, float uncertainty)
|
|
{
|
|
defaultAirSpeed = airspeed;
|
|
defaultAirSpeedVariance = sq(uncertainty);
|
|
}
|
|
|
|
/********************************************************
|
|
* External Navigation Measurements *
|
|
********************************************************/
|
|
|
|
void NavEKF3_core::writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms)
|
|
{
|
|
#if EK3_FEATURE_EXTERNAL_NAV
|
|
// protect against NaN
|
|
if (pos.is_nan() || isnan(posErr)) {
|
|
return;
|
|
}
|
|
|
|
// limit update rate to maximum allowed by sensor buffers and fusion process
|
|
// don't try to write to buffer until the filter has been initialised
|
|
if (((timeStamp_ms - extNavMeasTime_ms) < frontend->extNavIntervalMin_ms) || !statesInitialised) {
|
|
return;
|
|
} else {
|
|
extNavMeasTime_ms = timeStamp_ms;
|
|
}
|
|
|
|
ext_nav_elements extNavDataNew {};
|
|
|
|
if (resetTime_ms != extNavLastPosResetTime_ms) {
|
|
extNavDataNew.posReset = true;
|
|
extNavLastPosResetTime_ms = resetTime_ms;
|
|
} else {
|
|
extNavDataNew.posReset = false;
|
|
}
|
|
|
|
extNavDataNew.pos = pos.toftype();
|
|
extNavDataNew.posErr = posErr;
|
|
|
|
// calculate timestamp
|
|
timeStamp_ms = timeStamp_ms - delay_ms;
|
|
// Correct for the average intersampling delay due to the filter update rate
|
|
timeStamp_ms -= localFilterTimeStep_ms/2;
|
|
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
|
timeStamp_ms = MAX(timeStamp_ms, imuDataDelayed.time_ms);
|
|
extNavDataNew.time_ms = timeStamp_ms;
|
|
|
|
// store position data to buffer
|
|
storedExtNav.push(extNavDataNew);
|
|
|
|
// protect against attitude or angle being NaN
|
|
if (!quat.is_nan() && !isnan(angErr)) {
|
|
// extract yaw from the attitude
|
|
ftype roll_rad, pitch_rad, yaw_rad;
|
|
quat.to_euler(roll_rad, pitch_rad, yaw_rad);
|
|
yaw_elements extNavYawAngDataNew;
|
|
extNavYawAngDataNew.yawAng = yaw_rad;
|
|
extNavYawAngDataNew.yawAngErr = MAX(angErr, radians(5.0f)); // ensure yaw accuracy is no better than 5 degrees (some callers may send zero)
|
|
extNavYawAngDataNew.order = rotationOrder::TAIT_BRYAN_321; // Euler rotation order is 321 (ZYX)
|
|
extNavYawAngDataNew.time_ms = timeStamp_ms;
|
|
storedExtNavYawAng.push(extNavYawAngDataNew);
|
|
}
|
|
#endif // EK3_FEATURE_EXTERNAL_NAV
|
|
}
|
|
|
|
void NavEKF3_core::writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms)
|
|
{
|
|
#if EK3_FEATURE_EXTERNAL_NAV
|
|
// sanity check for NaNs
|
|
if (vel.is_nan() || isnan(err)) {
|
|
return;
|
|
}
|
|
|
|
if ((timeStamp_ms - extNavVelMeasTime_ms) < frontend->extNavIntervalMin_ms) {
|
|
return;
|
|
}
|
|
|
|
extNavVelMeasTime_ms = timeStamp_ms;
|
|
useExtNavVel = true;
|
|
// calculate timestamp
|
|
timeStamp_ms = timeStamp_ms - delay_ms;
|
|
// Correct for the average intersampling delay due to the filter updaterate
|
|
timeStamp_ms -= localFilterTimeStep_ms/2;
|
|
// Prevent time delay exceeding age of oldest IMU data in the buffer
|
|
timeStamp_ms = MAX(timeStamp_ms,imuDataDelayed.time_ms);
|
|
|
|
ext_nav_vel_elements extNavVelNew;
|
|
extNavVelNew.time_ms = timeStamp_ms;
|
|
extNavVelNew.vel = vel.toftype();
|
|
extNavVelNew.err = err;
|
|
extNavVelNew.corrected = false;
|
|
|
|
storedExtNavVel.push(extNavVelNew);
|
|
#endif // EK3_FEATURE_EXTERNAL_NAV
|
|
}
|
|
|
|
/*
|
|
update the GPS selection
|
|
*/
|
|
void NavEKF3_core::update_gps_selection(void)
|
|
{
|
|
const auto &gps = dal.gps();
|
|
|
|
// in normal operation use the primary GPS
|
|
selected_gps = gps.primary_sensor();
|
|
preferred_gps = selected_gps;
|
|
|
|
if (frontend->_affinity & EKF_AFFINITY_GPS) {
|
|
if (core_index < gps.num_sensors() ) {
|
|
// always prefer our core_index, unless we don't have that
|
|
// many GPS sensors available
|
|
preferred_gps = core_index;
|
|
}
|
|
if (gps.status(preferred_gps) >= AP_DAL_GPS::GPS_OK_FIX_3D) {
|
|
// select our preferred_gps if it has a 3D fix, otherwise
|
|
// use the primary GPS
|
|
selected_gps = preferred_gps;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
update the mag selection
|
|
*/
|
|
void NavEKF3_core::update_mag_selection(void)
|
|
{
|
|
const auto &compass = dal.compass();
|
|
|
|
if (frontend->_affinity & EKF_AFFINITY_MAG) {
|
|
if (core_index < compass.get_count() &&
|
|
compass.healthy(core_index) &&
|
|
compass.use_for_yaw(core_index)) {
|
|
// use core_index compass if it is healthy
|
|
magSelectIndex = core_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
update the baro selection
|
|
*/
|
|
void NavEKF3_core::update_baro_selection(void)
|
|
{
|
|
auto &baro = dal.baro();
|
|
|
|
// in normal operation use the primary baro
|
|
selected_baro = baro.get_primary();
|
|
|
|
if (frontend->_affinity & EKF_AFFINITY_BARO) {
|
|
if (core_index < baro.num_instances() &&
|
|
baro.healthy(core_index)) {
|
|
// use core_index baro if it is healthy
|
|
selected_baro = core_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
update the airspeed selection
|
|
*/
|
|
void NavEKF3_core::update_airspeed_selection(void)
|
|
{
|
|
const auto *arsp = dal.airspeed();
|
|
if (arsp == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// in normal operation use the primary airspeed sensor
|
|
selected_airspeed = arsp->get_primary();
|
|
|
|
if (frontend->_affinity & EKF_AFFINITY_ARSP) {
|
|
if (core_index < arsp->get_num_sensors() &&
|
|
arsp->healthy(core_index) &&
|
|
arsp->use(core_index)) {
|
|
// use core_index airspeed if it is healthy
|
|
selected_airspeed = core_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
update sensor selections
|
|
*/
|
|
void NavEKF3_core::update_sensor_selection(void)
|
|
{
|
|
update_gps_selection();
|
|
update_mag_selection();
|
|
update_baro_selection();
|
|
update_airspeed_selection();
|
|
}
|
|
|
|
/*
|
|
update timing statistics structure
|
|
*/
|
|
void NavEKF3_core::updateTimingStatistics(void)
|
|
{
|
|
if (timing.count == 0) {
|
|
timing.dtIMUavg_max = dtIMUavg;
|
|
timing.dtIMUavg_min = dtIMUavg;
|
|
timing.dtEKFavg_max = dtEkfAvg;
|
|
timing.dtEKFavg_min = dtEkfAvg;
|
|
timing.delAngDT_max = imuDataDelayed.delAngDT;
|
|
timing.delAngDT_min = imuDataDelayed.delAngDT;
|
|
timing.delVelDT_max = imuDataDelayed.delVelDT;
|
|
timing.delVelDT_min = imuDataDelayed.delVelDT;
|
|
} else {
|
|
timing.dtIMUavg_max = MAX(timing.dtIMUavg_max, dtIMUavg);
|
|
timing.dtIMUavg_min = MIN(timing.dtIMUavg_min, dtIMUavg);
|
|
timing.dtEKFavg_max = MAX(timing.dtEKFavg_max, dtEkfAvg);
|
|
timing.dtEKFavg_min = MIN(timing.dtEKFavg_min, dtEkfAvg);
|
|
timing.delAngDT_max = MAX(timing.delAngDT_max, imuDataDelayed.delAngDT);
|
|
timing.delAngDT_min = MIN(timing.delAngDT_min, imuDataDelayed.delAngDT);
|
|
timing.delVelDT_max = MAX(timing.delVelDT_max, imuDataDelayed.delVelDT);
|
|
timing.delVelDT_min = MIN(timing.delVelDT_min, imuDataDelayed.delVelDT);
|
|
}
|
|
timing.count++;
|
|
}
|
|
|
|
/*
|
|
update estimates of inactive bias states. This keeps inactive IMUs
|
|
as hot-spares so we can switch to them without causing a jump in the
|
|
error
|
|
*/
|
|
void NavEKF3_core::learnInactiveBiases(void)
|
|
{
|
|
#if INS_MAX_INSTANCES == 1
|
|
inactiveBias[0].gyro_bias = stateStruct.gyro_bias;
|
|
inactiveBias[0].accel_bias = stateStruct.accel_bias;
|
|
#else
|
|
const auto &ins = dal.ins();
|
|
|
|
// learn gyro biases
|
|
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
|
if (!ins.use_gyro(i)) {
|
|
// can't use this gyro
|
|
continue;
|
|
}
|
|
if (gyro_index_active == i) {
|
|
// use current estimates from main filter of gyro bias
|
|
inactiveBias[i].gyro_bias = stateStruct.gyro_bias;
|
|
} else {
|
|
// get filtered gyro and use the difference between the
|
|
// corrected gyro on the active IMU and the inactive IMU
|
|
// to move the inactive bias towards the right value
|
|
Vector3F filtered_gyro_active = ins.get_gyro(gyro_index_active).toftype() - (stateStruct.gyro_bias/dtEkfAvg);
|
|
Vector3F filtered_gyro_inactive = ins.get_gyro(i).toftype() - (inactiveBias[i].gyro_bias/dtEkfAvg);
|
|
Vector3F error = filtered_gyro_active - filtered_gyro_inactive;
|
|
|
|
// prevent a single large error from contaminating bias estimate
|
|
const ftype bias_limit = radians(5);
|
|
error.x = constrain_ftype(error.x, -bias_limit, bias_limit);
|
|
error.y = constrain_ftype(error.y, -bias_limit, bias_limit);
|
|
error.z = constrain_ftype(error.z, -bias_limit, bias_limit);
|
|
|
|
// slowly bring the inactive gyro in line with the active gyro. This corrects a 5 deg/sec
|
|
// gyro bias error in around 1 minute
|
|
inactiveBias[i].gyro_bias -= error * (1.0e-4f * dtEkfAvg);
|
|
}
|
|
}
|
|
|
|
// learn accel biases
|
|
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
|
if (!ins.use_accel(i)) {
|
|
// can't use this accel
|
|
continue;
|
|
}
|
|
if (accel_index_active == i) {
|
|
// use current estimates from main filter of accel bias
|
|
inactiveBias[i].accel_bias = stateStruct.accel_bias;
|
|
} else {
|
|
// get filtered accel and use the difference between the
|
|
// corrected accel on the active IMU and the inactive IMU
|
|
// to move the inactive bias towards the right value
|
|
Vector3F filtered_accel_active = ins.get_accel(accel_index_active).toftype() - (stateStruct.accel_bias/dtEkfAvg);
|
|
Vector3F filtered_accel_inactive = ins.get_accel(i).toftype() - (inactiveBias[i].accel_bias/dtEkfAvg);
|
|
Vector3F error = filtered_accel_active - filtered_accel_inactive;
|
|
|
|
// prevent a single large error from contaminating bias estimate
|
|
const ftype bias_limit = 1.0; // m/s/s
|
|
error.x = constrain_ftype(error.x, -bias_limit, bias_limit);
|
|
error.y = constrain_ftype(error.y, -bias_limit, bias_limit);
|
|
error.z = constrain_ftype(error.z, -bias_limit, bias_limit);
|
|
|
|
// slowly bring the inactive accel in line with the active
|
|
// accel. This corrects a 0.5 m/s/s accel bias error in
|
|
// around 1 minute
|
|
inactiveBias[i].accel_bias -= error * (1.0e-4f * dtEkfAvg);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
return declination in radians
|
|
*/
|
|
ftype NavEKF3_core::MagDeclination(void) const
|
|
{
|
|
// if we are using the WMM tables then use the table declination
|
|
// to ensure consistency with the table mag field. Otherwise use
|
|
// the declination from the compass library
|
|
if (have_table_earth_field && frontend->_mag_ef_limit > 0) {
|
|
return table_declination;
|
|
}
|
|
if (!use_compass()) {
|
|
return 0;
|
|
}
|
|
return dal.compass().get_declination();
|
|
}
|
|
|
|
/*
|
|
Update the on ground and not moving check.
|
|
Should be called once per IMU update.
|
|
Only updates when on ground and when operating without a magnetometer
|
|
*/
|
|
void NavEKF3_core::updateMovementCheck(void)
|
|
{
|
|
const bool runCheck = onGround && (yaw_source_last == AP_NavEKF_Source::SourceYaw::GPS || yaw_source_last == AP_NavEKF_Source::SourceYaw::GPS_COMPASS_FALLBACK ||
|
|
yaw_source_last == AP_NavEKF_Source::SourceYaw::EXTNAV || yaw_source_last == AP_NavEKF_Source::SourceYaw::GSF || !use_compass());
|
|
if (!runCheck)
|
|
{
|
|
onGroundNotMoving = false;
|
|
return;
|
|
}
|
|
|
|
const ftype gyro_limit = radians(3.0f);
|
|
const ftype gyro_diff_limit = 0.2f;
|
|
const ftype accel_limit = 1.0f;
|
|
const ftype accel_diff_limit = 5.0f;
|
|
const ftype hysteresis_ratio = 0.7f;
|
|
const ftype dtEkfAvgInv = 1.0f / dtEkfAvg;
|
|
|
|
// get latest bias corrected gyro and accelerometer data
|
|
const auto &ins = dal.ins();
|
|
Vector3F gyro = ins.get_gyro(gyro_index_active).toftype() - stateStruct.gyro_bias * dtEkfAvgInv;
|
|
Vector3F accel = ins.get_accel(accel_index_active).toftype() - stateStruct.accel_bias * dtEkfAvgInv;
|
|
|
|
if (!prevOnGround) {
|
|
gyro_prev = gyro;
|
|
accel_prev = accel;
|
|
onGroundNotMoving = false;
|
|
gyro_diff = gyro_diff_limit;
|
|
accel_diff = accel_diff_limit;
|
|
return;
|
|
}
|
|
|
|
// calculate a gyro rate of change metric
|
|
Vector3F temp = (gyro - gyro_prev) * dtEkfAvgInv;
|
|
gyro_prev = gyro;
|
|
gyro_diff = 0.99f * gyro_diff + 0.01f * temp.length();
|
|
|
|
// calculate a acceleration rate of change metric
|
|
temp = (accel - accel_prev) * dtEkfAvgInv;
|
|
accel_prev = accel;
|
|
accel_diff = 0.99f * accel_diff + 0.01f * temp.length();
|
|
|
|
const ftype gyro_length_ratio = gyro.length() / gyro_limit;
|
|
const ftype accel_length_ratio = (accel.length() - GRAVITY_MSS) / accel_limit;
|
|
const ftype gyro_diff_ratio = gyro_diff / gyro_diff_limit;
|
|
const ftype accel_diff_ratio = accel_diff / accel_diff_limit;
|
|
bool logStatusChange = false;
|
|
if (onGroundNotMoving) {
|
|
if (gyro_length_ratio > frontend->_ognmTestScaleFactor ||
|
|
fabsF(accel_length_ratio) > frontend->_ognmTestScaleFactor ||
|
|
gyro_diff_ratio > frontend->_ognmTestScaleFactor ||
|
|
accel_diff_ratio > frontend->_ognmTestScaleFactor)
|
|
{
|
|
onGroundNotMoving = false;
|
|
logStatusChange = true;
|
|
}
|
|
} else if (gyro_length_ratio < frontend->_ognmTestScaleFactor * hysteresis_ratio &&
|
|
fabsF(accel_length_ratio) < frontend->_ognmTestScaleFactor * hysteresis_ratio &&
|
|
gyro_diff_ratio < frontend->_ognmTestScaleFactor * hysteresis_ratio &&
|
|
accel_diff_ratio < frontend->_ognmTestScaleFactor * hysteresis_ratio)
|
|
{
|
|
onGroundNotMoving = true;
|
|
logStatusChange = true;
|
|
}
|
|
|
|
if (logStatusChange || imuSampleTime_ms - lastMoveCheckLogTime_ms > 200) {
|
|
lastMoveCheckLogTime_ms = imuSampleTime_ms;
|
|
#if HAL_LOGGING_ENABLED
|
|
const struct log_XKFM pkt{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKFM_MSG),
|
|
time_us : dal.micros64(),
|
|
core : core_index,
|
|
ongroundnotmoving : onGroundNotMoving,
|
|
gyro_length_ratio : float(gyro_length_ratio),
|
|
accel_length_ratio : float(accel_length_ratio),
|
|
gyro_diff_ratio : float(gyro_diff_ratio),
|
|
accel_diff_ratio : float(accel_diff_ratio),
|
|
};
|
|
AP::logger().WriteBlock(&pkt, sizeof(pkt));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void NavEKF3_core::SampleDragData(const imu_elements &imu)
|
|
{
|
|
#if EK3_FEATURE_DRAG_FUSION
|
|
// Average and down sample to 5Hz
|
|
const ftype bcoef_x = frontend->_ballisticCoef_x;
|
|
const ftype bcoef_y = frontend->_ballisticCoef_y;
|
|
const ftype mcoef = frontend->_momentumDragCoef.get();
|
|
const bool using_bcoef_x = bcoef_x > 1.0f;
|
|
const bool using_bcoef_y = bcoef_y > 1.0f;
|
|
const bool using_mcoef = mcoef > 0.001f;
|
|
if (!using_bcoef_x && !using_bcoef_y && !using_mcoef) {
|
|
// nothing to do
|
|
dragFusionEnabled = false;
|
|
return;
|
|
}
|
|
|
|
dragFusionEnabled = true;
|
|
|
|
// down-sample the drag specific force data by accumulating and calculating the mean when
|
|
// sufficient samples have been collected
|
|
|
|
dragSampleCount ++;
|
|
|
|
// note acceleration is accumulated as a delta velocity
|
|
dragDownSampled.accelXY.x += imu.delVel.x;
|
|
dragDownSampled.accelXY.y += imu.delVel.y;
|
|
dragDownSampled.time_ms += imu.time_ms;
|
|
dragSampleTimeDelta += imu.delVelDT;
|
|
|
|
// calculate and store means from accumulated values
|
|
if (dragSampleTimeDelta > 0.2f - 0.5f * EKF_TARGET_DT) {
|
|
// note conversion from accumulated delta velocity to acceleration
|
|
dragDownSampled.accelXY.x /= dragSampleTimeDelta;
|
|
dragDownSampled.accelXY.y /= dragSampleTimeDelta;
|
|
dragDownSampled.time_ms /= dragSampleCount;
|
|
|
|
// write to buffer
|
|
storedDrag.push(dragDownSampled);
|
|
|
|
// reset accumulators
|
|
dragSampleCount = 0;
|
|
dragDownSampled.accelXY.zero();
|
|
dragDownSampled.time_ms = 0;
|
|
dragSampleTimeDelta = 0.0f;
|
|
}
|
|
#endif // EK3_FEATURE_DRAG_FUSION
|
|
}
|
|
|
|
/*
|
|
get the earth mag field
|
|
*/
|
|
void NavEKF3_core::getEarthFieldTable(const Location &loc)
|
|
{
|
|
table_earth_field_ga = AP_Declination::get_earth_field_ga(loc).toftype();
|
|
table_declination = radians(AP_Declination::get_declination(loc.lat*1.0e-7,
|
|
loc.lng*1.0e-7));
|
|
have_table_earth_field = true;
|
|
}
|
|
|
|
/*
|
|
update earth field, called at 1Hz
|
|
*/
|
|
void NavEKF3_core::checkUpdateEarthField(void)
|
|
{
|
|
if (have_table_earth_field && filterStatus.flags.using_gps) {
|
|
Location loc = EKF_origin;
|
|
loc.offset(stateStruct.position.x, stateStruct.position.y);
|
|
getEarthFieldTable(loc);
|
|
}
|
|
}
|