ardupilot/libraries/AP_Tuning/AP_Tuning.cpp
2017-01-12 17:39:37 +11:00

339 lines
10 KiB
C++

#include "AP_Tuning.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_Tuning::var_info[] = {
// @Param: CHAN
// @DisplayName: Transmitter tuning channel
// @Description: This sets the channel for transmitter tuning. This should be connected to a knob or slider on your transmitter. It needs to be setup to use the PWM range given by TUNE_CHAN_MIN to TUNE_CHAN_MAX
// @Values: 0:Disable,5:Chan5,6:Chan6,7:Chan7,8:Chan8,9:Chan9,10:Chan10,11:Chan11,12:Chan12,13:Chan13,14:Chan14,15:Chan15,16:Chan16
// @User: Standard
AP_GROUPINFO("CHAN", 1, AP_Tuning, channel, 0),
// @Param: CHAN_MIN
// @DisplayName: Transmitter tuning channel minimum pwm
// @Description: This sets the PWM lower limit for the tuning channel
// @Range: 900 2100
// @User: Standard
AP_GROUPINFO("CHAN_MIN", 2, AP_Tuning, channel_min, 1000),
// @Param: CHAN_MAX
// @DisplayName: Transmitter tuning channel maximum pwm
// @Description: This sets the PWM upper limit for the tuning channel
// @Range: 900 2100
// @User: Standard
AP_GROUPINFO("CHAN_MAX", 3, AP_Tuning, channel_max, 2000),
// @Param: SELECTOR
// @DisplayName: Transmitter tuning selector channel
// @Description: This sets the channel for the transmitter tuning selector switch. This should be a 2 position switch, preferably spring loaded. A PWM above 1700 means high, below 1300 means low. If no selector is set then you won't be able to switch between parameters during flight or re-center the tuning knob
// @Values: 0:Disable,1:Chan1,2:Chan3,3:Chan3,4:Chan4,5:Chan5,6:Chan6,7:Chan7,8:Chan8,9:Chan9,10:Chan10,11:Chan11,12:Chan12,13:Chan13,14:Chan14,15:Chan15,16:Chan16
// @User: Standard
AP_GROUPINFO("SELECTOR", 4, AP_Tuning, selector, 0),
// @Param: RANGE
// @DisplayName: Transmitter tuning range
// @Description: This sets the range over which tuning will change a parameter. A value of 2 means the tuning parameter will go from 0.5 times the start value to 2x the start value over the range of the tuning channel
// @User: Standard
AP_GROUPINFO("RANGE", 5, AP_Tuning, range, 2.0f),
// @Param: MODE_REVERT
// @DisplayName: Revert on mode change
// @Description: This controls whether tuning values will revert on a flight mode change.
// @Values: 0:Disable,1:Enable
// @User: Standard
AP_GROUPINFO("MODE_REVERT", 6, AP_Tuning, mode_revert, 1),
// @Param: ERR_THRESH
// @DisplayName: Controller error threshold
// @Description: This sets the controller error threshold above which an alarm will sound and a message will be sent to the GCS to warn of controller instability
// @Range: 0 1
// @User: Standard
AP_GROUPINFO("ERR_THRESH", 7, AP_Tuning, error_threshold, 0.15f),
AP_GROUPEND
};
/*
handle selector switch input
*/
void AP_Tuning::check_selector_switch(void)
{
if (selector == 0) {
// no selector switch enabled
return;
}
RC_Channel *selchan = RC_Channels::rc_channel(selector-1);
if (selchan == nullptr) {
return;
}
uint16_t selector_in = selchan->get_radio_in();
if (selector_in >= 1700) {
// high selector
if (selector_start_ms == 0) {
selector_start_ms = AP_HAL::millis();
}
uint32_t hold_time = AP_HAL::millis() - selector_start_ms;
if (hold_time > 5000 && changed) {
// save tune
save_parameters();
re_center();
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Tuning: Saved");
AP_Notify::events.tune_save = 1;
changed = false;
need_revert = 0;
}
} else if (selector_in <= 1300) {
// low selector
if (selector_start_ms != 0) {
uint32_t hold_time = AP_HAL::millis() - selector_start_ms;
if (hold_time < 2000) {
// re-center the value
re_center();
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Tuning: recentered %s", get_tuning_name(current_parm));
} else if (hold_time < 5000) {
// change parameter
next_parameter();
}
}
selector_start_ms = 0;
}
}
/*
re-center the tuning value
*/
void AP_Tuning::re_center(void)
{
AP_Float *f = get_param_pointer(current_parm);
if (f != nullptr) {
center_value = f->get();
}
mid_point_wait = true;
}
/*
check for changed tuning input
*/
void AP_Tuning::check_input(uint8_t flightmode)
{
if (channel <= 0 || parmset <= 0) {
// disabled
return;
}
// check for revert on changed flightmode
if (flightmode != last_flightmode) {
if (need_revert != 0 && mode_revert != 0) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Tuning: reverted");
revert_parameters();
re_center();
}
last_flightmode = flightmode;
}
// only adjust values at 10Hz
uint32_t now = AP_HAL::millis();
uint32_t dt_ms = now - last_check_ms;
if (dt_ms < 100) {
return;
}
last_check_ms = now;
if (channel > hal.rcin->num_channels()) {
// not valid channel
return;
}
// check for invalid range
if (range < 1.1f) {
range.set(1.1f);
}
if (current_parm == 0) {
next_parameter();
}
// cope with user changing parmset while tuning
if (current_set != parmset) {
re_center();
}
current_set = parmset;
check_selector_switch();
if (selector_start_ms) {
// no tuning while selector high
return;
}
if (current_parm == 0) {
return;
}
RC_Channel *chan = RC_Channels::rc_channel(channel-1);
if (chan == nullptr) {
return;
}
float chan_value = linear_interpolate(-1, 1, chan->get_radio_in(), channel_min, channel_max);
if (dt_ms > 500) {
last_channel_value = chan_value;
}
// check for controller error
check_controller_error();
if (fabsf(chan_value - last_channel_value) < 0.01) {
// ignore changes of less than 1%
return;
}
//hal.console->printf("chan_value %.2f last_channel_value %.2f\n", chan_value, last_channel_value);
if (mid_point_wait) {
// see if we have crossed the mid-point. We use a small deadzone to make it easier
// to move to the "indent" portion of a slider to start tuning
const float dead_zone = 0.02;
if ((chan_value > dead_zone && last_channel_value > 0) ||
(chan_value < -dead_zone && last_channel_value < 0)) {
// still waiting
return;
}
// starting tuning
mid_point_wait = false;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Tuning: mid-point %s", get_tuning_name(current_parm));
AP_Notify::events.tune_started = 1;
}
last_channel_value = chan_value;
float new_value;
if (chan_value > 0) {
new_value = linear_interpolate(center_value, range*center_value, chan_value, 0, 1);
} else {
new_value = linear_interpolate(center_value/range, center_value, chan_value, -1, 0);
}
changed = true;
need_revert |= (1U << current_parm_index);
set_value(current_parm, new_value);
Log_Write_Parameter_Tuning(new_value);
}
/*
log a tuning change
*/
void AP_Tuning::Log_Write_Parameter_Tuning(float value)
{
DataFlash_Class::instance()->Log_Write("PTUN", "TimeUS,Set,Parm,Value,CenterValue", "QBBff",
AP_HAL::micros64(),
parmset,
current_parm,
(double)value,
(double)center_value);
}
/*
save parameters in the set
*/
void AP_Tuning::save_parameters(void)
{
uint8_t set = (uint8_t)parmset.get();
if (set < set_base) {
// single parameter tuning
save_value(set);
return;
}
// multiple parameter tuning
for (uint8_t i=0; tuning_sets[i].num_parms != 0; i++) {
if (tuning_sets[i].set+set_base == set) {
for (uint8_t p=0; p<tuning_sets[i].num_parms; p++) {
save_value(tuning_sets[i].parms[p]);
}
break;
}
}
}
/*
save parameters in the set
*/
void AP_Tuning::revert_parameters(void)
{
uint8_t set = (uint8_t)parmset.get();
if (set < set_base) {
// single parameter tuning
reload_value(set);
return;
}
for (uint8_t i=0; tuning_sets[i].num_parms != 0; i++) {
if (tuning_sets[i].set+set_base == set) {
for (uint8_t p=0; p<tuning_sets[i].num_parms; p++) {
if (p >= 32 || (need_revert & (1U<<p))) {
reload_value(tuning_sets[i].parms[p]);
}
}
need_revert = 0;
break;
}
}
}
/*
switch to the next parameter in the set
*/
void AP_Tuning::next_parameter(void)
{
uint8_t set = (uint8_t)parmset.get();
if (set < set_base) {
// nothing to do but re-center
current_parm = set;
re_center();
return;
}
for (uint8_t i=0; tuning_sets[i].num_parms != 0; i++) {
if (tuning_sets[i].set+set_base == set) {
if (current_parm == 0) {
current_parm_index = 0;
} else {
current_parm_index = (current_parm_index + 1) % tuning_sets[i].num_parms;
}
current_parm = tuning_sets[i].parms[current_parm_index];
re_center();
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Tuning: started %s", get_tuning_name(current_parm));
AP_Notify::events.tune_next = current_parm_index+1;
break;
}
}
}
/*
return a string representing a tuning parameter
*/
const char *AP_Tuning::get_tuning_name(uint8_t parm)
{
for (uint8_t i=0; tuning_names[i].name != nullptr; i++) {
if (parm == tuning_names[i].parm) {
return tuning_names[i].name;
}
}
return "UNKNOWN";
}
/*
check for controller error
*/
void AP_Tuning::check_controller_error(void)
{
float err = controller_error(current_parm);
if (err > error_threshold) {
uint32_t now = AP_HAL::millis();
if (now - last_controller_error_ms > 2000 && hal.util->get_soft_armed()) {
AP_Notify::events.tune_error = 1;
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Tuning: error %.2f", (double)err);
last_controller_error_ms = now;
}
}
}