ardupilot/Tools/AP_Periph/rangefinder.cpp
Thomas Watson f2f1ac39cf AP_Periph: remove redundant DroneCAN packet buffer initialization
The <msg>_encode method always zeros the buffer up to <msg>_MAX_SIZE
bytes so there is no need to do it before calling the function.

Saves at least 8 bytes per instance.
2024-08-03 19:02:39 +10:00

122 lines
4.1 KiB
C++

#include "AP_Periph.h"
#ifdef HAL_PERIPH_ENABLE_RANGEFINDER
/*
rangefinder support
*/
#include <dronecan_msgs.h>
#ifndef AP_PERIPH_PROBE_CONTINUOUS
#define AP_PERIPH_PROBE_CONTINUOUS 0
#endif
extern const AP_HAL::HAL &hal;
/*
update CAN rangefinder
*/
void AP_Periph_FW::can_rangefinder_update(void)
{
if (rangefinder.get_type(0) == RangeFinder::Type::NONE) {
return;
}
#if AP_PERIPH_PROBE_CONTINUOUS
// We only allow continuous probing for rangefinders while vehicle is disarmed. Probing is currently inefficient and leads to longer loop times.
if ((rangefinder.num_sensors() == 0) && !hal.util->get_soft_armed() && option_is_set(PeriphOptions::PROBE_CONTINUOUS)) {
uint32_t now = AP_HAL::millis();
static uint32_t last_probe_ms;
if (now - last_probe_ms >= 1000) {
last_probe_ms = now;
rangefinder.init(ROTATION_NONE);
}
}
#endif
uint32_t now = AP_HAL::millis();
if (g.rangefinder_max_rate > 0 &&
now - last_rangefinder_update_ms < uint32_t(1000/g.rangefinder_max_rate)) {
// limit to max rate
return;
}
last_rangefinder_update_ms = now;
// update all rangefinder instances
rangefinder.update();
// cycle through each rangefinder instance to find one to send
// equipment.range_sensor only uses 3 CAN frames so we just send all available sensor measurements.
for (uint8_t i = 0; i <= rangefinder.num_sensors(); i++) {
if (rangefinder.get_type(i) == RangeFinder::Type::NONE) {
continue;
}
AP_RangeFinder_Backend *backend = rangefinder.get_backend(i);
if (backend == nullptr) {
continue;
}
RangeFinder::Status status = backend->status();
if (status <= RangeFinder::Status::NoData) {
// don't send any data for this instance
continue;
}
const uint32_t sample_ms = backend->last_reading_ms();
if (last_rangefinder_sample_ms[i] == sample_ms) {
// don't same the same reading again
continue;
}
last_rangefinder_sample_ms[i] = sample_ms;
uavcan_equipment_range_sensor_Measurement pkt {};
pkt.sensor_id = rangefinder.get_address(i);
switch (status) {
case RangeFinder::Status::OutOfRangeLow:
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_CLOSE;
break;
case RangeFinder::Status::OutOfRangeHigh:
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_TOO_FAR;
break;
case RangeFinder::Status::Good:
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_VALID_RANGE;
break;
default:
pkt.reading_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_READING_TYPE_UNDEFINED;
break;
}
switch (backend->get_mav_distance_sensor_type()) {
case MAV_DISTANCE_SENSOR_LASER:
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_LIDAR;
break;
case MAV_DISTANCE_SENSOR_ULTRASOUND:
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_SONAR;
break;
case MAV_DISTANCE_SENSOR_RADAR:
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_RADAR;
break;
default:
pkt.sensor_type = UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SENSOR_TYPE_UNDEFINED;
break;
}
float dist_m = backend->distance();
pkt.range = dist_m;
uint8_t buffer[UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_MAX_SIZE];
uint16_t total_size = uavcan_equipment_range_sensor_Measurement_encode(&pkt, buffer, !periph.canfdout());
canard_broadcast(UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_SIGNATURE,
UAVCAN_EQUIPMENT_RANGE_SENSOR_MEASUREMENT_ID,
CANARD_TRANSFER_PRIORITY_LOW,
&buffer[0],
total_size);
}
}
#endif // HAL_PERIPH_ENABLE_RANGEFINDER