ardupilot/libraries/AP_HAL_PX4/RCOutput.cpp
Andrew Tridgell 7e3b8a30f5 HAL_PX4: use px4io generated values for servo output readback
this makes it easier to observe the behaviour of IO failsafe
2014-11-05 21:54:53 +11:00

281 lines
7.7 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "RCOutput.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_pwm_output.h>
extern const AP_HAL::HAL& hal;
using namespace PX4;
void PX4RCOutput::init(void* unused)
{
_perf_rcout = perf_alloc(PC_ELAPSED, "APM_rcout");
_pwm_fd = open(PWM_OUTPUT_DEVICE_PATH, O_RDWR);
if (_pwm_fd == -1) {
hal.scheduler->panic("Unable to open " PWM_OUTPUT_DEVICE_PATH);
}
if (ioctl(_pwm_fd, PWM_SERVO_ARM, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup IO arming\n");
}
if (ioctl(_pwm_fd, PWM_SERVO_SET_ARM_OK, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup IO arming OK\n");
}
_rate_mask = 0;
_alt_fd = -1;
_servo_count = 0;
_alt_servo_count = 0;
if (ioctl(_pwm_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_servo_count) != 0) {
hal.console->printf("RCOutput: Unable to get servo count\n");
return;
}
_pwm_sub = orb_subscribe(ORB_ID_VEHICLE_CONTROLS);
// mark number of outputs given by px4io as zero
_outputs.noutputs = 0;
_alt_fd = open("/dev/px4fmu", O_RDWR);
if (_alt_fd == -1) {
hal.console->printf("RCOutput: failed to open /dev/px4fmu");
return;
}
}
void PX4RCOutput::_init_alt_channels(void)
{
if (_alt_fd == -1) {
return;
}
if (ioctl(_alt_fd, PWM_SERVO_ARM, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup alt IO arming\n");
return;
}
if (ioctl(_alt_fd, PWM_SERVO_SET_ARM_OK, 0) != 0) {
hal.console->printf("RCOutput: Unable to setup alt IO arming OK\n");
return;
}
if (ioctl(_alt_fd, PWM_SERVO_GET_COUNT, (unsigned long)&_alt_servo_count) != 0) {
hal.console->printf("RCOutput: Unable to get servo count\n");
}
}
void PX4RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
// we can't set this per channel yet
if (freq_hz > 50) {
// we're being asked to set the alt rate
if (ioctl(_pwm_fd, PWM_SERVO_SET_UPDATE_RATE, (unsigned long)freq_hz) != 0) {
hal.console->printf("RCOutput: Unable to set alt rate to %uHz\n", (unsigned)freq_hz);
return;
}
_freq_hz = freq_hz;
}
/* work out the new rate mask. The PX4IO board has 3 groups of servos.
Group 0: channels 0 1
Group 1: channels 4 5 6 7
Group 2: channels 2 3
Channels within a group must be set to the same rate.
For the moment we never set the channels above 8 to more than
50Hz
*/
if (freq_hz > 50) {
// we are setting high rates on the given channels
_rate_mask |= chmask & 0xFF;
if (_rate_mask & 0x3) {
_rate_mask |= 0x3;
}
if (_rate_mask & 0xc) {
_rate_mask |= 0xc;
}
if (_rate_mask & 0xF0) {
_rate_mask |= 0xF0;
}
} else {
// we are setting low rates on the given channels
if (chmask & 0x3) {
_rate_mask &= ~0x3;
}
if (chmask & 0xc) {
_rate_mask &= ~0xc;
}
if (chmask & 0xf0) {
_rate_mask &= ~0xf0;
}
}
if (ioctl(_pwm_fd, PWM_SERVO_SET_SELECT_UPDATE_RATE, _rate_mask) != 0) {
hal.console->printf("RCOutput: Unable to set alt rate mask to 0x%x\n", (unsigned)_rate_mask);
}
}
uint16_t PX4RCOutput::get_freq(uint8_t ch)
{
if (_rate_mask & (1U<<ch)) {
return _freq_hz;
}
return 50;
}
void PX4RCOutput::enable_ch(uint8_t ch)
{
if (ch >= 8 && !(_enabled_channels & (1U<<ch))) {
// this is the first enable of an auxillary channel - setup
// aux channels now. This delayed setup makes it possible to
// use BRD_PWM_COUNT to setup the number of PWM channels.
_init_alt_channels();
}
_enabled_channels |= (1U<<ch);
}
void PX4RCOutput::disable_ch(uint8_t ch)
{
_enabled_channels &= ~(1U<<ch);
}
void PX4RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us)
{
struct pwm_output_values pwm_values;
memset(&pwm_values, 0, sizeof(pwm_values));
for (uint8_t i=0; i<_servo_count; i++) {
if ((1UL<<i) & chmask) {
pwm_values.values[i] = period_us;
}
pwm_values.channel_count++;
}
int ret = ioctl(_pwm_fd, PWM_SERVO_SET_DISARMED_PWM, (long unsigned int)&pwm_values);
if (ret != OK) {
hal.console->printf("Failed to setup disarmed PWM for 0x%08x to %u\n", (unsigned)chmask, period_us);
}
}
void PX4RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us)
{
struct pwm_output_values pwm_values;
memset(&pwm_values, 0, sizeof(pwm_values));
for (uint8_t i=0; i<_servo_count; i++) {
if ((1UL<<i) & chmask) {
pwm_values.values[i] = period_us;
}
pwm_values.channel_count++;
}
int ret = ioctl(_pwm_fd, PWM_SERVO_SET_FAILSAFE_PWM, (long unsigned int)&pwm_values);
if (ret != OK) {
hal.console->printf("Failed to setup failsafe PWM for 0x%08x to %u\n", (unsigned)chmask, period_us);
}
}
bool PX4RCOutput::force_safety_on(void)
{
int ret = ioctl(_pwm_fd, PWM_SERVO_SET_FORCE_SAFETY_ON, 0);
return (ret == OK);
}
void PX4RCOutput::force_safety_off(void)
{
int ret = ioctl(_pwm_fd, PWM_SERVO_SET_FORCE_SAFETY_OFF, 0);
if (ret != OK) {
hal.console->printf("Failed to force safety off\n");
}
}
void PX4RCOutput::write(uint8_t ch, uint16_t period_us)
{
if (ch >= _servo_count + _alt_servo_count) {
return;
}
if (!(_enabled_channels & (1U<<ch))) {
// not enabled
return;
}
if (ch >= _max_channel) {
_max_channel = ch + 1;
}
if (period_us != _period[ch]) {
_period[ch] = period_us;
_need_update = true;
}
}
void PX4RCOutput::write(uint8_t ch, uint16_t* period_us, uint8_t len)
{
for (uint8_t i=0; i<len; i++) {
write(i, period_us[i]);
}
}
uint16_t PX4RCOutput::read(uint8_t ch)
{
if (ch >= PX4_NUM_OUTPUT_CHANNELS) {
return 0;
}
// if px4io has given us a value for this channel use that,
// otherwise use the value we last sent. This makes it easier to
// observe the behaviour of failsafe in px4io
if (ch < _outputs.noutputs) {
return _outputs.output[ch];
}
return _period[ch];
}
void PX4RCOutput::read(uint16_t* period_us, uint8_t len)
{
for (uint8_t i=0; i<len; i++) {
period_us[i] = read(i);
}
}
void PX4RCOutput::_timer_tick(void)
{
uint32_t now = hal.scheduler->micros();
// always send at least at 20Hz, otherwise the IO board may think
// we are dead
if (now - _last_output > 50000) {
_need_update = true;
}
if (_need_update && _pwm_fd != -1) {
_need_update = false;
perf_begin(_perf_rcout);
if (_max_channel <= _servo_count) {
::write(_pwm_fd, _period, _max_channel*sizeof(_period[0]));
} else {
// we're using both sets of outputs
::write(_pwm_fd, _period, _servo_count*sizeof(_period[0]));
if (_alt_fd != -1 && _alt_servo_count > 0) {
uint8_t n = _max_channel - _servo_count;
if (n > _alt_servo_count) {
n = _alt_servo_count;
}
::write(_alt_fd, &_period[_servo_count], n*sizeof(_period[0]));
}
}
perf_end(_perf_rcout);
_last_output = now;
}
update_pwm:
bool rc_updated = false;
if (_pwm_sub >= 0 && orb_check(_pwm_sub, &rc_updated) == 0 && rc_updated) {
orb_copy(ORB_ID_VEHICLE_CONTROLS, _pwm_sub, &_outputs);
}
}
#endif // CONFIG_HAL_BOARD