ardupilot/libraries/AP_Declination/generate/generate.py
Andrew Tridgell d6c258e9d0 AP_Declination: update magnetic field tables
now using igrf13
2023-01-03 11:01:32 +11:00

193 lines
6.4 KiB
Python
Executable File

#!/usr/bin/env python3
'''
generate field tables from IGRF13. Note that this requires python3
'''
import igrf
import numpy as np
import datetime
from pathlib import Path
from pymavlink.rotmat import Vector3, Matrix3
import math
import argparse
parser = argparse.ArgumentParser(description='generate mag tables')
parser.add_argument('--sampling-res', type=int, default=10, help='sampling resolution, degrees')
parser.add_argument('--check-error', action='store_true', help='check max error')
parser.add_argument('--filename', type=str, default='tables.cpp', help='tables file')
args = parser.parse_args()
if not Path("AP_Declination.h").is_file():
raise OSError("Please run this tool from the AP_Declination directory")
def write_table(f,name, table):
'''write one table'''
f.write("const float AP_Declination::%s[%u][%u] = {\n" %
(name, NUM_LAT, NUM_LON))
for i in range(NUM_LAT):
f.write(" {")
for j in range(NUM_LON):
f.write("%.5ff" % table[i][j])
if j != NUM_LON-1:
f.write(",")
f.write("}")
if i != NUM_LAT-1:
f.write(",")
f.write("\n")
f.write("};\n\n")
date = datetime.datetime.now()
SAMPLING_RES = args.sampling_res
SAMPLING_MIN_LAT = -90
SAMPLING_MAX_LAT = 90
SAMPLING_MIN_LON = -180
SAMPLING_MAX_LON = 180
lats = np.arange(SAMPLING_MIN_LAT, SAMPLING_MAX_LAT+SAMPLING_RES, SAMPLING_RES)
lons = np.arange(SAMPLING_MIN_LON, SAMPLING_MAX_LON+SAMPLING_RES, SAMPLING_RES)
NUM_LAT = lats.size
NUM_LON = lons.size
intensity_table = np.empty((NUM_LAT, NUM_LON))
inclination_table = np.empty((NUM_LAT, NUM_LON))
declination_table = np.empty((NUM_LAT, NUM_LON))
max_error = 0
max_error_pos = None
max_error_field = None
def get_igrf(lat, lon):
'''return field as [declination_deg, inclination_deg, intensity_gauss]'''
mag = igrf.igrf(date, glat=lat, glon=lon, alt_km=0., isv=0, itype=1)
intensity = float(mag.total/1e5)
inclination = float(mag.incl)
declination = float(mag.decl)
return [declination, inclination, intensity]
def interpolate_table(table, latitude_deg, longitude_deg):
'''interpolate inside a table for a given lat/lon in degrees'''
# round down to nearest sampling resolution
min_lat = int(math.floor(latitude_deg / SAMPLING_RES) * SAMPLING_RES)
min_lon = int(math.floor(longitude_deg / SAMPLING_RES) * SAMPLING_RES)
# find index of nearest low sampling point
min_lat_index = int(math.floor(-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES)
min_lon_index = int(math.floor(-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES)
# calculate intensity
data_sw = table[min_lat_index][min_lon_index]
data_se = table[min_lat_index][min_lon_index + 1]
data_ne = table[min_lat_index + 1][min_lon_index + 1]
data_nw = table[min_lat_index + 1][min_lon_index]
# perform bilinear interpolation on the four grid corners
data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw
data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw
value = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min
return value
'''
calculate magnetic field intensity and orientation, interpolating in tables
returns array [declination_deg, inclination_deg, intensity] or None
'''
def interpolate_field(latitude_deg, longitude_deg):
# limit to table bounds
if latitude_deg < SAMPLING_MIN_LAT:
return None
if latitude_deg >= SAMPLING_MAX_LAT:
return None
if longitude_deg < SAMPLING_MIN_LON:
return None
if longitude_deg >= SAMPLING_MAX_LON:
return None
intensity_gauss = interpolate_table(intensity_table, latitude_deg, longitude_deg)
declination_deg = interpolate_table(declination_table, latitude_deg, longitude_deg)
inclination_deg = interpolate_table(inclination_table, latitude_deg, longitude_deg)
return [declination_deg, inclination_deg, intensity_gauss]
def field_to_Vector3(mag):
'''return mGauss field from dec, inc and intensity'''
R = Matrix3()
mag_ef = Vector3(mag[2]*1000.0, 0.0, 0.0)
R.from_euler(0.0, -math.radians(mag[1]), math.radians(mag[0]))
return R * mag_ef
def test_error(lat, lon):
'''check for error from lat,lon'''
global max_error, max_error_pos, max_error_field
mag1 = get_igrf(lat, lon)
mag2 = interpolate_field(lat, lon)
ef1 = field_to_Vector3(mag1)
ef2 = field_to_Vector3(mag2)
err = (ef1 - ef2).length()
if err > max_error or err > 100:
print(lat, lon, err, ef1, ef2)
max_error = err
max_error_pos = (lat, lon)
max_error_field = ef1 - ef2
def test_max_error(lat, lon):
'''check for maximum error from lat,lon over SAMPLING_RES range'''
steps = 3
delta = SAMPLING_RES/steps
for i in range(steps):
for j in range(steps):
lat2 = lat + i * delta
lon2 = lon + j * delta
if lat2 >= SAMPLING_MAX_LAT or lon2 >= SAMPLING_MAX_LON:
continue
if lat2 <= SAMPLING_MIN_LAT or lon2 <= SAMPLING_MIN_LON:
continue
test_error(lat2, lon2)
for i,lat in enumerate(lats):
for j,lon in enumerate(lons):
mag = get_igrf(lat, lon)
declination_table[i][j] = mag[0]
inclination_table[i][j] = mag[1]
intensity_table[i][j] = mag[2]
with open(args.filename, 'w') as f:
f.write('''// this is an auto-generated file from the IGRF tables. Do not edit
// To re-generate run generate/generate.py
#include "AP_Declination.h"
''')
f.write('''const float AP_Declination::SAMPLING_RES = %u;
const float AP_Declination::SAMPLING_MIN_LAT = %u;
const float AP_Declination::SAMPLING_MAX_LAT = %u;
const float AP_Declination::SAMPLING_MIN_LON = %u;
const float AP_Declination::SAMPLING_MAX_LON = %u;
''' % (SAMPLING_RES,
SAMPLING_MIN_LAT,
SAMPLING_MAX_LAT,
SAMPLING_MIN_LON,
SAMPLING_MAX_LON))
write_table(f,'declination_table', declination_table)
write_table(f,'inclination_table', inclination_table)
write_table(f,'intensity_table', intensity_table)
if args.check_error:
print("Checking for maximum error")
for lat in range(-60,60,1):
for lon in range(-180,180,1):
test_max_error(lat, lon)
print("Generated with max error %.2f %s at (%.2f,%.2f)" % (
max_error, max_error_field, max_error_pos[0], max_error_pos[1]))
print("Table generated in %s" % args.filename)